Substrate-mediated Self-assembly of 1,3,5-Benzene/Triazine Functionalized by Flexible Isopropylethynyl Groups

Yu Lin , Sifan You , Miao Xie , Meng Zhang , Chaojie Xu , Lifeng Chi

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1048 -1055.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1048 -1055. DOI: 10.1007/s40242-025-5077-x
Article
research-article

Substrate-mediated Self-assembly of 1,3,5-Benzene/Triazine Functionalized by Flexible Isopropylethynyl Groups

Author information +
History +
PDF

Abstract

Nanofabrication of tunable two-dimensional (2D) supramolecular architecture relies on the delicate balance between molecule-molecule and molecule-substrate interactions, where carefully designed molecules as building blocks are required. In this study, we introduced isopropylethynyl groups into two tripodal molecules, i.e., 1,3,5-tris-(isopropylethynyl)-benzene (iPr-TEB) and 2,4,6-tris-(isopropylethynyl)-1,3,5-triazine (iPr-TET), and investigated their self-assembly on Au(111) and Ag(111) surfaces under ultra-high-vacuum using scanning tunneling microscopy (STM). On Au(111) and Ag(111), iPr-TEB formed relatively comparable self-assembled nanopatterns through side-by-side dimers aggregation. These subtle differences in aggregation correlate with their negligible variations in adsorption conformation and energy. In contrast, iPr-TET exhibited pronounced substrate-dependent adsorption geometries due to stronger molecule-substrate interactions, resulting in disparate self-assembled nanoarchitectures on these two surfaces. Our results highlight the rotational flexibility of the isopropyl groups enabled by the single bond connecting them to the main acetylenic core, modulating intermolecular interactions and fine-tuning molecule-substrate interactions strength, hence providing a new strategy for crystal engineering in two dimensions.

Keywords

Substrate-mediated self-assembly / Adsorption conformation / Scanning tunneling microscopy / 2D material

Cite this article

Download citation ▾
Yu Lin, Sifan You, Miao Xie, Meng Zhang, Chaojie Xu, Lifeng Chi. Substrate-mediated Self-assembly of 1,3,5-Benzene/Triazine Functionalized by Flexible Isopropylethynyl Groups. Chemical Research in Chinese Universities, 2025, 41(5): 1048-1055 DOI:10.1007/s40242-025-5077-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GoronzyD P, EbrahimiM, RoseiF, Arramel, FangY, De FeyterS, TaitS L, WangC, BetonP H, WeeA T S, WeissP S, PerepichkaD FACS Nano, 2018, 127445.

[2]

BarthJ VAnnu. Rev. Phys. Chem., 2007, 58375.

[3]

VerstraeteL, De FeyterSChem. Soc. Rev., 2021, 505884.

[4]

El GarahM, DianatA, CadedduA, GutierrezR, CecchiniM, CookT R, CiesielskiA, StangP J, CunibertiG, SamoriPSmall, 2016, 12343.

[5]

KepčijaN, ZhangY-Q, KleinschrodtM, BjörkJ, KlyatskayaS, KlappenbergerF, RubenM, BarthJ VJ. Phys. Chem. C, 2013, 1173987.

[6]

CiesielskiA, SzabelskiP J, RzyskoW, CadedduA, CookT R, StangP J, SamoriPJ. Am. Chem. Soc., 2013, 1356942.

[7]

ZhaoW, HaagF, Piquero-ZulaicaI, Abd El-FattahZ M, PendemP, Vezzoni VicenteP, ZhangY-Q, CaoN, SeitsonenA P, AllegrettiF, YangB, BarthJ VACS Nano, 2024, 1820157.

[8]

YangZ, FrommL, SanderT, GebhardtJ, SchaubT A, GörlingA, KivalaM, MaierSAngew. Chem. Int. Ed., 2020, 599549.

[9]

SunQ, CaiL, MaH, YuanC, XuWACS Nano, 2016, 107023.

[10]

MacLeodJ M, Lipton-DuffinJ, FuC, TaerumT, PerepichkaD F, RoseiFACS Nano, 2017, 118901.

[11]

DaiH, WangS, HisakiI, NakagawaS, IkenakaN, DengK, XiaoX, ZengQChem-Asian J., 2017, 122558.

[12]

UrgelJ I, ÉcijaD, LyuG, ZhangR, PalmaC-A, AuwärterW, LinN, BarthJ VNat. Chem., 2016, 8657.

[13]

FangY, GhijsensE, IvasenkoO, CaoH, NoguchiA, MaliK S, TaharaK, TobeY, De FeyterSNat. Chem., 2016, 8711.

[14]

ZhangY-Q, KepčijaN, KleinschrodtM, DillerK, FischerS, PapageorgiouA C, AllegrettiF, BjörkJ, KlyatskayaS, KlappenbergerF, RubenM, BarthJ VNat. Commun., 2012, 31286.

[15]

ZhouH, LiuJ, DuS, ZhangL, LiG, ZhangY, TangB Z, GaoH-JJ. Am. Chem. Soc., 2014, 1365567.

[16]

SillyFJ. Phys. Chem. C, 2014, 11811975.

[17]

ShengK, SunQ, ZhangC, TanQJ. Phys. Chem. C, 2014, 1183088.

[18]

ZhangJ, WangC, DuanR, PengC, YangB, CaoN, ZhangH, ChiLChem. Res. Chinese Universities, 2020, 36685.

[19]

DasS, NascimbeniG, de la MorenaR O, IshiwariF, ShojiY, FukushimaT, BuckM, ZojerE, ZharnikovMACS Nano, 2021, 1511168.

[20]

GrossmannL, RingelE, Rastgoo-LahroodA, KingB T, RosenJ, HecklW M, OprisD, BjörkJ, LackingerMAngew. Chem. Int. Ed., 2022, 61e202201044.

[21]

DelfinoC L, HaoY, MartinC, MinoiaA, GopiE, MaliK S, Van der AuweraerM, GeertsY H, Van AertS, LazzaroniR, De FeyterSJ. Phys. Chem. C, 2023, 12723023.

[22]

HamadehA, PalminoF, MathurinJ, Deniset-BesseauA, GrosnitL, LuzetV, JeannoutotJ, DazziA, ChériouxFCommun. Chem., 2023, 6246.

[23]

KinikarA, Di GiovannantonioM, UrgelJ I, EimreK, QiuZ, GuY, JinE, NaritaA, WangX-Y, MüllenK, RuffieuxP, PignedoliC A, FaselRNat. Synth., 2022, 1289.

[24]

SonodaM, InabaA, ItahashiK, TobeYOrg. Lett, 2001, 32419.

[25]

HorcasI, FernándezR, Gómez-RodríguezJ M, ColcheroJ, Gómez-HerreroJ, BaroA MRev. Sci. Instrum., 2007, 78013705.

[26]

KresseG, HafnerJPhys. Rev. B, 1993, 47558.

[27]

KresseG, FurthmüllerJPhys. Rev. B, 1996, 5411169.

[28]

BlöchlP EPhys. Rev. B, 1994, 5017953.

[29]

KresseG, JoubertDPhys. Rev. B, 1999, 591758.

[30]

PerdewJ P, BurkeK, ErnzerhofMPhys. Rev. Lett., 1996, 773865.

[31]

LiH, WangY, YangB, ZhangH, XieM, ChiLJ. Phys. Chem. A, 2024, 1287536.

[32]

WangL, LiuY, XieM, HanY, ChenL, XueR, LiH, ZhangX, ZhangD, ZhongQ, ChenQ, ZhangH, MullenK, ChiLAngew. Chem. Int. Ed., 2025, 64e202417070.

[33]

SinghalA, KancharlapalliS, GhoshS KJ. Mol. Model., 2018, 24217.

[34]

TaharaK, KanekoK, KatayamaK, ItanoS, NguyenC H, AmorimD D, De FeyterS, TobeYLangmuir, 2015, 317032.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/