Highly Active and Durable PtIr Nanoparticles Toward Oxygen Reduction and Oxygen Evolution Reaction

Shuo Han , Yang Lv , Mengyu Yang , Yongpeng Li , Cui Tan , Feng Liu , Hao Yang , Jianan Chu , Miao Liu , Chengyu Zhu , Rui Gao , Yujiang Song

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1217 -1224.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1217 -1224. DOI: 10.1007/s40242-025-5070-4
Article
research-article

Highly Active and Durable PtIr Nanoparticles Toward Oxygen Reduction and Oxygen Evolution Reaction

Author information +
History +
PDF

Abstract

Design and synthesis of highly active and durable bifunctional electrocatalysts is crucial toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in unitized regenerative proton exchange membrane fuel cells (UR-PEMFCs). Herein, we report a simple phase-transfer reduction method to synthesize PtIr nanoparticles with different molar ratios. When the Pt/Ir molar ratio is 2.2:1, the bifunctional oxygen activity is optimal. The ORR mass activity of Pt2.2Ir nanoparticles is 190.3 mA/mgPt @ 0.9 V (vs. RHE), which is 1.8 times and 3.7 times those of commercial Pt black and physically mixed commercial Pt and Ir black (Pt+Ir black), respectively. At the potential of 1.53 V vs. RHE, the OER mass activity of Pt2.2Ir nanoparticles is 202.7 mA/mgIr, which is 2.0 times and 1.3 times those of Ir black and Pt+Ir black, respectively. An overpotential gap of Pt2.2Ir nanoparticles (618 mV) between the half-wave potential of ORR and the potential at 10 mA/cm2 of OER is superior to Pt+Ir black (662 mV). After durability tests, the ORR/OER activity of Pt2.2Ir nanoparticles remained much better than Pt+Ir black. X-Ray photoelectron spectroscopy suggests that the electronic interaction between Pt and Ir accounts for enhanced bifunctional oxygen activity. Eventually, the Pt2.2Ir nanoparticles were evaluated in UR-PEMFCs.

Keywords

Unitized regenerative proton exchange membrane fuel cell / Oxygen reduction reaction / Oxygen evolution reaction / Bifunctional oxygen electrocatalyst

Cite this article

Download citation ▾
Shuo Han, Yang Lv, Mengyu Yang, Yongpeng Li, Cui Tan, Feng Liu, Hao Yang, Jianan Chu, Miao Liu, Chengyu Zhu, Rui Gao, Yujiang Song. Highly Active and Durable PtIr Nanoparticles Toward Oxygen Reduction and Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2025, 41(5): 1217-1224 DOI:10.1007/s40242-025-5070-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GarcíaG, Roca-AyatsM, LilloA, GalanteJ L, PeñaM A, Martínez-HuertaM VCatal. Today, 2013, 21067.

[2]

WangS, WeberA Z, PengXCurr. Opin. Electrochem., 2023, 40101340.

[3]

Devi RenukaK, BhatS D, UnniS MUnitized Regenerative Fuel Cells: Future of Renewable Energy Research, 2022, Chennai. Scrivener Publishing LLC.

[4]

Chen X., Niu F., Ma T., Li Q., Wang S., Shen S., Smart Mol., 2024, e20240056.

[5]

LeeB S, ParkH Y, ChoM K, JungJ W, KimH J, HenkensmeierD, YooS J, KimJ Y, ParkS, LeeK Y, JangJ HElectrochem. Commun., 2016, 6414.

[6]

PuZ, ZhangG, HassanpourA, ZhengD, WangS, LiaoS, ChenZ, SunSAppl. Energy, 2021, 283116376.

[7]

JinB, GaoJ, ZhangY, ShaoMSmart Mol., 2024, 2e20230026.

[8]

PengX, TaieZ, LiuJ, ZhangY, PengX, RegmiY N, FornaciariJ C, CapuanoC, BinnyD, KariukiN N, MyersD J, ScottM C, WeberA Z, DanilovicNEnergy Environ. Sci., 2020, 134872.

[9]

FornaciariJ C, GargS, PengX, RegmiY N, WeberA Z, DanilovicN JElectrochem. Soc., 2022, 169054514.

[10]

RegmiY N, PengX, FornaciariJ C, WeiM, MyersD J, WeberA Z, DanilovicNEnergy Environ. Sci., 2020, 132096.

[11]

ParkS, ShaoY, LiuJ, WangYEnergy Environ. Sci., 2012, 59331.

[12]

KongF D, ZhangS, YinG P, WangZ B, DuC Y, ChenG Y, ZhangNInt. J. Hydrogen Energy, 2012, 3759.

[13]

HuangX, ZhaoZ, CaoL, ChenY, ZhuE, LinZ, LiM, YanA, ZettlA, WangY M, DuanX, MuellerT, HuangYScience, 2015, 3481230.

[14]

ZhuJ, XuL, LyuZ, XieM, ChenR, JinW, MavrikakisM, XiaYAngew. Chem. Int. Ed., 2021, 6010384.

[15]

YuD, LiuQ, ChenB, ZhaoY, JiaP, SunK, GaoFJ. Mater. Chem. A, 2022, 1011354.

[16]

ZhuS, LiuY, GongY, SunY, ChenK, LiuY, LiuW, XiaT, ZhengQ, GaoH, GuoH, WangRSmall, 2024, 202305062.

[17]

LiuC, WeiZ, CaoM, CaoRNano Res., 2024, 174844.

[18]

DamjanovicA, BirssV I, BoudreauxD SJ. Electrochem. Soc., 1991, 1382549.

[19]

SchultzeJ W, VetterK JElectrochim. Acta, 1973, 18889.

[20]

TackettB M, ShengW, KattelS, YaoS, YanB, KuttiyielK A, WuQ, ChenJG. ACS Catal., 2018, 82615.

[21]

ReierT, NongH N, TeschnerD, SchlöglR, StrasserPAdv. Energy Mater., 2017, 71601275.

[22]

ReierT, OezaslanM, StrasserPACS Catal., 2012, 21765.

[23]

YimS D, LeeW Y, YoonY G, SohnY J, ParkG G, YangT H, KimC SElectrochim. Acta, 2004, 50713.

[24]

KimI G, NahI W, OhI H, ParkSJ. Power Sources, 2017, 364215.

[25]

BhuvanendranN, RavichandranS, JayaseelanS S, XuQ, KhotsengL, SuHEnergy, 2020, 211118695.

[26]

MoS, JinC, WangF, WenC, WangN, FengL, BaiJ, LiuJACS Appl. Energy Mater., 2021, 413361.

[27]

RavichandranS, BhuvanendranN, XuQ, MaiyalaganT, XingL, SuHJ. Colloid Interface Sci., 2022, 608207.

[28]

KoY J, KimH, LeeW H, HanM H, OhC, ChoiC H, KimW, BaikJ M, ChoiJ Y, StrasserP, OhH SJ. Mater. Chem. A, 2023, 115864.

[29]

LiJ, YaoY, AnL, WuS, ZhangN, JinJ, WangR, XiPSmart Mol., 2023, 1e20220005.

[30]

LvY, LiuH, LiJ, ChenJ, SongYElectroanal. Chem., 2020, 870114172.

[31]

LvY, LiuH, QinJ, GaoR, ZhangY, XieY, LiJ, SongYProg. Nat. Sci.: Mater. Int., 2020, 30832.

[32]

FangD, ZhangH, HeL, GengJ, SongW, SunS, ShaoZ, YiBChemElectroChem, 2019, 63633.

[33]

KwonJ, SunS, ChoiS, LeeK, JoS, ParkK, KimY K, ParkH B, ParkH Y, JangJ H, HanH, PaikU, SongTAdv. Mater., 2023, 352300091.

[34]

QinJ, LiuH, HanG, LvY, WangX, ZhangG, SongYSmall, 2023, 192207155.

[35]

SunC, GeJ, LiM, QinJ, ZhaoY, ChaiC, LiY, GeJ, SongYMater. Today Energy, 2024, 39101480.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/