Synergistic Dual-cocatalyst Modified TiO2/g-C3N4 Heterojunctions for Efficient Photocatalytic Overall Water Splitting

Shuilian Cheng , Yuxuan Fang , Siyuan Yang , Qiongzhi Gao , Xin Cai , Shengsen Zhang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 751 -759.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 751 -759. DOI: 10.1007/s40242-025-5063-3
Article
research-article

Synergistic Dual-cocatalyst Modified TiO2/g-C3N4 Heterojunctions for Efficient Photocatalytic Overall Water Splitting

Author information +
History +
PDF

Abstract

The development of heterojunction photocatalysts with highly efficient charge separation is essential for achieving solar-driven overall water splitting without sacrificial agents. In this work, a well-defined Type-II TiO2/g-C3N4 heterojunction was constructed and co-loaded with Pt nanoparticles and MnOx as hydrogen and oxygen evolution cocatalysts, respectively, forming a Pt-P/CN-MnX composite. The optimized Pt-P/CN-Mn30 sample exhibited broadened visible-light absorption (up to 600 nm) and a notably reduced charge recombination rate. Under the irradiation of simulated sunlight, it achieved a hydrogen evolution rate of 530.6 μmol·g–1·h–1, 10.3, 5.0 and 2.7 times higher than those of g-C3N4-Mn3%, P25-Pt2% and P25/CN, respectively, without sacrificial agents. Moreover, the photocatalyst retained over 79.75% of its activity after six cycles, demonstrating excellent stability. Mechanistic analysis revealed efficient spatial charge separation, with electrons transferring from g-C3N4 to TiO2 and holes migrating toward MnOx. These synergistic effects significantly enhanced redox kinetics. This study presents a novel dual-cocatalyst strategy for multi-interface photocatalysis and provides valuable insights into designing high-performance systems for sustainable water splitting.

Keywords

Type-II heterojunction / Dual cocatalyst / Overall water splitting / Photocatalysis

Cite this article

Download citation ▾
Shuilian Cheng, Yuxuan Fang, Siyuan Yang, Qiongzhi Gao, Xin Cai, Shengsen Zhang. Synergistic Dual-cocatalyst Modified TiO2/g-C3N4 Heterojunctions for Efficient Photocatalytic Overall Water Splitting. Chemical Research in Chinese Universities, 2025, 41(4): 751-759 DOI:10.1007/s40242-025-5063-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XiaoJ, VequizoJ J M, HisatomiT, RabeahJ, NakabayashiM, WangZ, XiaoQ, LiH, PanZ, KrauseM, YinN, SmithG, ShibataN, BrücknerA, YamakataA, TakataT, DomenKJ. Am. Chem. Soc., 2021, 14310059

[2]

ZhangJ, YuanX, SiM, JiangL, YuHAdv. Colloid and Interface Sci., 2020, 282102209

[3]

CaiJ, LiuB, ZhangS, WangL, WuZ, ZhangJ, ChengBJ. Mater. Sci. Technol., 2024, 197183

[4]

AlmusattarW, TahirM, MadiM, TahirBJ. Environ. Chem. Eng., 2022, 10108010

[5]

HamdanS, WigglesworthM J, MuscettaM, MaR, HelalM I, MartsinovichN, PalmisanoG, VernuccioSInt. J. Hydrogen Energy, 2025, 118394

[6]

LiuZ, JiS, ZhaoS, HuX, AnX, LiuT, ChengX, ChoiH, DawsonGJ. Alloys Comp., 2025, 1019179318

[7]

YahiaouiI, Gómez-AvilésA, Aissani-BenissadF, BediaJ, BelverCReaction Kinetics, Mech. Catal., 2024, 1372867

[8]

HouJ, LanX, ShiJ, YuS, ZhangY, WangH, RenCInt. J. Hydrogen Energy, 2020, 452852

[9]

LuH, JiaR, WangC, GuanW, WangP, ZhangL, GanZ, DongL, YuL, SuiLInt. J. Hydrogen Energy, 2024, 95766

[10]

WangM, ZengY, DongG, WangCChin. J. Catal., 2020, 411498

[11]

LvB, LuL, FengX, WuX, WangX, ZouX, ZhangFCeram. Int., 2020, 4626689

[12]

FengY, GuanY, ZhouE, ZhangX, WangYAdv. Sci., 2022, 92201339

[13]

WangK, YangS, WuYJ. Environ. Chem. Eng., 2022, 10108353

[14]

MoralesD M, KazakovaM A, DieckhöferS, SelyutinA G, GolubtsovG V, SchuhmannW, MasaJAdv. Funct. Mater., 2019, 301905992

[15]

FangY, HuangW, YangS, ZhouX, GeC, GaoQ, FangY, ZhangSInt. J. Hydrogen Energy, 2020, 4517378

[16]

JinZ, BardA JAngew. Chem. Int. Ed., 2020, 60794

[17]

SunX Y, ZhangF J, KongCColloids Surf. A, 2020, 594124653

[18]

LeeD E, JinK D, DevthadeV, JoW K, TondaSAppl. Surf. Sci., 2022, 584152532

[19]

LuJ, LiM, LiuL, WangH, CuiWInt. J. Hydrogen Energy, 2025, 115214

[20]

ScanduraG, SajjadM, SinghN, PalmisanoG, RodríguezJAppl. Catal. A, 2021, 624118321

[21]

LeeD E, KimD J, MoruS, KimMG, JoW K, TondaSAppl. Surf. Sci., 2021, 563150292

[22]

LiuY, ZouX, LiL, ShenZ, CaoY, WangY, CuiL, ChengJ, WangY, LiXJ. Colloid Interface Sci., 2021, 599795

[23]

NieL, YuJ, FuJChemCatChem, 2014, 61983

[24]

GuoR, WangJ, LiJ, LiH, WangH, CaoY, ChenJ, ChengT, YangH, ShengMACS Catal., 2024, 1411164

[25]

LiR, WangY, ZuoC, WangJ, ShengX, HuangY, ZhangY, ZhouYInt. J. Hydrogen Energy, 2023, 4828277

[26]

WangQ, WangX, YuZ, JiangX, ChenJ, TaoL, WangM, ShenYNano Energy, 2019, 60827

[27]

WangZ, HuoY, FanY, WuR, WuH, WangF, XuXJ. Photochem. Photobiol. A: Chem., 2018, 35861

[28]

XuM, ChenY, QinJ, FengY, LiW, ChenW, ZhuJ, LiH, BianZEnviron. Sci. Technol., 2018, 5213879

[29]

SunS, WuX, HuangZ, ShenH, ZhaoH, JingGChem. Eng. J., 2022, 435135035

[30]

LiH, SongQ, WanS, TungC W, LiuC, PanY, LuoG, ChenH M, CaoS, YuJ, ZhangLSmall, 2023, 192301711

[31]

AiM, ZhangJW, GaoR, PanL, ZhangX, ZouJ JAppl. Catal. B, 2019, 256117805

[32]

MengA, ZhangL, ChengB, YuJACS Appl. Mater. Interfaces, 2018, 115581

[33]

PanJ, ChenZ, WangP, WangP, YuQ, ZhaoW, WangJ, ZhuM, ZhengY, LiCChem. Eng. J., 2021, 424130357

[34]

RaziqF, SunL, WangY, ZhangX, HumayunM, AliS, BaiL, QuY, YuH, JingLAdv. Energy Mater., 2017, 8201701580

[35]

PanJ, WangP, WangP, YuQ, WangJ, SongC, ZhengY, LiCChem. Eng. J., 2021, 405126622

[36]

ZhouD, ChenZ, YangQ, DongX, ZhangJ, QinLSol. Energy Mater. Sol. Cells, 2016, 157399

[37]

Vesali-KermaniE, Habibi-YangjehA, GhoshSJ. Ind. Eng. Chem., 2020, 84185

[38]

TanL L, OngW J, ChaiS P, GohB T, MohamedA RAppl. Catal. B, 2015, 179160

[39]

ParkJ, LiuH, PiaoG, KangU, JeongH W, JanákyC, ParkHChem. Eng. J., 2022, 437135388

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/