Towards Bio-derived Electrolytes for Sustainable Redox Flow Batteries

Xiaoyu Huo , Xingyi Shi , Liang An

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 464 -471.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 464 -471. DOI: 10.1007/s40242-025-5051-7
Review

Towards Bio-derived Electrolytes for Sustainable Redox Flow Batteries

Author information +
History +
PDF

Abstract

The transition to renewable energy systems has intensified the need for sustainable, large-scale energy storage solutions, and redox flow batteries (RFBs) have emerged as a promising technology due to their scalability, safety, and long cycle life. However, conventional RFBs that rely on metal-based electrolytes face significant challenges, including high cost, resource scarcity, and environmental toxicity. Bio-derived electrolytes offer a sustainable alternative that combines renewable sources with tunable electrochemical properties. This review comprehensively summarizes the latest progress of RFB bio-derived electrolytes and discusses the electrochemical performances of plant-derived quinones, lignin derivatives, and fungal metabolites. The limitations in the systems, such as lower solubility limits, crossover issues, and long-term stability are evaluated, with suggested future research directions. The work provides valuable insights for the development of next-generation green RFB systems, which align with global sustainability goals.

Keywords

Redox flow battery / Electrolyte / Bio-derived electrolyte / Biomaterial / Sustainability / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Xiaoyu Huo, Xingyi Shi, Liang An. Towards Bio-derived Electrolytes for Sustainable Redox Flow Batteries. Chemical Research in Chinese Universities, 2025, 41(3): 464-471 DOI:10.1007/s40242-025-5051-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangW, LuoQ, LiB, WeiX, LiL, YangZAdv. Funct. Mater., 2013, 23: 970.

[2]

RanaM M, UddinM, SarkarM R, MerajS T, ShafiullahG, MuyeenS, IslamM A, JamalTJ. Energy Storage, 2023, 68: 107811.

[3]

HuoX, ShiX, BaiY, ZengY, AnLCell Rep. Phys. Sci., 2024, 5: 101782.

[4]

HuoX, ShiX, WangQ, ZengY, AnLCurr. Opin. Electrochem., 2024, 49: 101633.

[5]

LiJ, ZhangB, SongQ, BorthwickA GRSC Adv., 2016, 6: 32940.

[6]

ReynardD, VrubelH, DennisonC R, BattistelA, GiraultHChemSusChem, 2019, 12: 1222.

[7]

NavalpotroP, Castillo-MartínezE, Carretero-GonzálezJSustain. Energy Fuels, 2021, 5: 310.

[8]

KoeseM, BlancoC F, VertV B, VijverM GJ. Ind. Ecol., 2023, 27: 223.

[9]

PoliN, BonaldoC, MorettoM, GuarnieriMAppl. Energy, 2024, 362: 122954.

[10]

JanoschkaT, MartinN, HagerM D, SchubertU SAngew. Chem. Int. Ed., 2016, 55: 14427.

[11]

LiB, LiuJNatl. Sci. Rev., 2017, 4: 91.

[12]

HouZ, ChenX, LiuJ, HuangZ, ChenY, ZhouM, LiuW, ZhouHJ. Power Sources, 2024, 601: 234242.

[13]

BamgbopaM O, FetyanA, VaginM, AdelodunA AJ. Energy Storage, 2022, 50: 104352.

[14]

DellerZ, JonesL A, ManiamSGreen Chem., 2021, 23: 4955.

[15]

DingY, YuGAngew. Chem. Int. Ed., 2017, 56: 8614.

[16]

LiedelCChemSusChem, 2020, 13: 2110.

[17]

HanC, LiH, ShiR, ZhangT, TongJ, LiJ, LiBJ. Mater. Chem. A, 2019, 7: 23378.

[18]

MiroshnikovM, DivyaK P, BabuG, MeiyazhaganA, AravaL M R, AjayanP M, JohnGJ. Mater. Chem. A, 2016, 4: 12370.

[19]

BerlingS, HidalgoJ M, PatilN, García-QuismondoE, PalmaJ, de LeónC PJ. Energy Storage, 2023, 68: 107620.

[20]

AbdelazizO Y, VivesM B, MankarS V, WarlinN, NguyenT T, ZhangB, HultebergC P, KhataeeAiScience, 2024, 27: 10941.

[21]

KimN, LienemannS, KhanZ, GreczynskiG, RahmanudinA, VaginM, AhmedF, PetsagkourakisI, EdbergJ, CrispinXJ. Mater. Chem. A, 2023, 11: 25703.

[22]

MiroshnikovM, MahankaliK, ThangavelN K, SatapathyS, AravaL M R, AjayanP M, JohnGChemSusChem, 2020, 13: 2186.

[23]

LiuY, LuS, ChenS, WangH, ZhangJ, XiangYACS Appl. Energy Mater., 2019, 2: 2469.

[24]

HuP, LanH, WangX, YangY, LiuX, WangH, GuoLEnergy Storage Mater., 2019, 19: 62.

[25]

AdewuyiA, AkinreleJJ. Appl. Sci. Environ. Manag., 2022, 26: 187

[26]

YangG, ZhuY, HaoZ, ZhangQ, LuY, YanZ, ChenJAdv. Energy Mater., 2024, 14: 2400022.

[27]

LuoQ, ZengT, GuK, LinQ, YangWACS Appl. Energy Mater., 2024, 7: 11610.

[28]

BajwaD S, PourhashemG, UllahA H, BajwaS GInd. Crops Prod., 2019, 139: 111526.

[29]

WuX, JiangJ, WangC, LiuJ, PuY, RagauskasA, LiS, YangBBiofuels Bioprod. Biorefining., 2020, 14: 650.

[30]

JungH Y, LeeJ S, HanH T, JungJ, EomK, LeeJ TPolymers, 2022, 14: 673.

[31]

ChakrabortyM, Battestini VivesM, AbdelazizO Y, HenrikssonG, Wreland LindströmR, HultebergC P, KhataeeAACS Sustain. Chem. Eng., 2024, 12: 15409.

[32]

MukhopadhyayA, HamelJ, KatahiraR, ZhuHACS Sustain. Chem. Eng., 2018, 6: 5394.

[33]

JiaoL, SunM, YangJ, YangW, DaiHInd. Crops Prod., 2022, 187: 115431.

[34]

SchlemmerW, NothdurftP, PetzoldA, RiessG, FrühwirtP, SchmalleggerM, Gescheidt-DemnerG, FischerR, FreunbergerS A, KernWAngew. Chem. Int. Ed., 2020, 59: 22943.

[35]

JiaoL, SunM, YangJ, YangW, DaiHInt. J. Biol. Macromol., 2023, 229: 236.

[36]

WilhelmsenC O, MuffJ, SørensenJ LEnergy Storage, 2023, 5: e450.

[37]

ChristiansenJ V, IsbrandtT, PetersenC, SondergaardT E, NielsenM R, PedersenT B, SørensenJ L, LarsenT O, FrisvadJ CAppl. Microbiol. Biotechnol., 2021, 105: 8157.

[38]

Huang J., Wang S., Chen J., Chen C., Lizundia E., Adv. Mater., 2025, 2416733.

[39]

WilhelmsenC O, KristensenS B, NolteO, VolodinI A, ChristiansenJ V, IsbrandtT, SørensenT, PetersenC, SondergaardT E, Lehmann NielsenKBatteries & Supercaps, 2023, 6: e202200365.

[40]

WilhelmsenC O, Pasadakis-KavounisA, ChristiansenJ V, IsbrandtT, AlmindM R, LarsenT O, HjelmJ, SørensenJ L, MuffJACS Sustain. Chem. Eng., 2023, 11: 9206.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/