Integration of Periodic External Fields in Dissipative Particle Dynamics Simulation for Designing Stimuli-responsive Triblock Copolymer Materials

Kuo Zhang , Bingyu Li , Rui Shi , Huimin Gao , Zhongyuan Lu

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1106 -1113.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1106 -1113. DOI: 10.1007/s40242-025-5050-8
Article
research-article

Integration of Periodic External Fields in Dissipative Particle Dynamics Simulation for Designing Stimuli-responsive Triblock Copolymer Materials

Author information +
History +
PDF

Abstract

The development of functionally accurate stimuli-responsive materials based on the principle of dissipative self-assembly (DSA) poses significant challenges within polymer chemistry, a field critical for elucidating the fundamental mechanisms underpinning the specific functions of living organisms. Based on the dissipative particle dynamics simulations, this study proposes a novel approach to driving the DSA process of polymer solutions through the application of periodic external fields, thereby modulating enthalpy changes. We aim to design stimuli-responsive materials capable of dynamically transitioning between non-equilibrium three-dimensional (3D) nanogels and steady-state spherical micelles or layered structures. Our findings indicate that the formation of the dissipative structure of the 3D gel is contingent upon the frequency of the external field exceeding a critical threshold, which instigates high-frequency oscillations of the conformational transitions of the polymer block copolymer. Concurrently, we observe that the power of the external field predominantly influences the formation rate of the dissipative structure; specifically, higher external field power correlates with accelerated formation kinetics. Moreover, the design principle outlined in this research is applicable to polymer concentrations ranging from 20% to 40%, effectively streamlining the experimental procedure by obviating the requirement for precise concentration control. This investigation offers valuable insights into the design of biomimetic stimui-responsive materials and contributes to a deeper understanding of the mechanisms, by which external fields facilitate DSA processes in polymer systems.

Keywords

Block copolymer / Dissipative self-assembly / Dissipative particle dynamics simulation / Stimuli-responsive material

Cite this article

Download citation ▾
Kuo Zhang, Bingyu Li, Rui Shi, Huimin Gao, Zhongyuan Lu. Integration of Periodic External Fields in Dissipative Particle Dynamics Simulation for Designing Stimuli-responsive Triblock Copolymer Materials. Chemical Research in Chinese Universities, 2025, 41(5): 1106-1113 DOI:10.1007/s40242-025-5050-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WhitesidesG M, GrzybowskiBScience, 2002, 2952418.

[2]

KushnerD JBacteriol. Rev., 1969, 33302.

[3]

KarsentiENat. Rev. Mol. Cell Biol., 2008, 9255.

[4]

HongF, ZhangF, LiuY, YanHChem. Res., 2017, 11712584

[5]

LevinA, HakalaT A, SchnaiderL, BernardesG J L, GazitE, KnowlesT P JNat. Rev. Chem., 2020, 4615.

[6]

GuoJ Q, ZiaA, QiuQ F, NortonM, QiuK Q, UsubaJ, LiuZ Y, YiM H, Rich-NewS T, HaganM, FradenS, HanG D, DiaoJ, WangF, XuBJ. Am. Chem. Soc., 2024, 14626102.

[7]

FialkowskiM, BishopK J M, KlajnR, SmoukovS K, CampbellC J, GrzybowskiB AJ. Phys. Chem. B, 2006, 1102482.

[8]

BoekhovenJ, BrizardA M, KowlgiK N K, KoperG J M, EelkemaR, van EschJ HAngew. Chem. Int. Ed., 2010, 494825.

[9]

van RossumS A P, Tena-SolsonaM, van EschJ H, EelkemaR, BoekhovenJChem. Soc. Rev., 2017, 465519.

[10]

LangX H, HuangY J, HeL R, WangY X, ThumuU, ChuZ L, HuckW T S, ZhaoHNat. Commun., 2023, 143084.

[11]

BoekhovenJ, HendriksenW E, KoperG J M, EelkemaR, van EschJ HScience, 2015, 3491075.

[12]

RoyS, PillaiP PLangmuir, 2023, 3912967.

[13]

FieldenS D PJ. Am. Chem. Soc., 2024, 14618781.

[14]

FuH M, CaoN J, ZengW, LiaoM, YaoS L, ZhouJ J, ZhangWJ. Am. Chem. Soc., 2024, 1463323.

[15]

SeemanN C, SleimanH FNat. Rev. Mater., 2018, 317068.

[16]

PalivanC G, HeubergerL, GaitzschJ, VoitB, AppelhansD, FernandesB B, BattagliaG, DuJ Z, AbdelmohsenL, van HestJ C M, HuJ, LiuS, ZhongZ, SunH, MutschlerA, LecommandouxSBiomacromolecules, 2024, 255454.

[17]

WeissenfelsM, GemenJ, KlajnRChem, 2021, 723.

[18]

SinghA, ParvinP, SahaB, DasDNat. Rev. Chem., 2024, 8723.

[19]

MaY, ZhaoW W, SheP F, LiuS Y, ShenL, LiX L, LiuS J, ZhaoQ, HuangW, WongW YSmall Methods, 2019, 31900142.

[20]

BhanguS K, BocchinfusoG, AshokkumarM, CavalieriFNanoscale Horiz., 2020, 5553.

[21]

ChenX M, FengW J, BisoyiH K, ZhangS, ChenX, YangH, LiQNat. Commun., 2022, 133216.

[22]

WangH, SongY Q, WangW S, ChenN L, HuB B, LiuX, ZhangZ Y, YuZ LJ. Am. Chem. Soc., 2023, 146330.

[23]

TimonenJ V I, LatikkaM, LeiblerL, RasR H A, IkkalaOScience, 2013, 341253.

[24]

ShermanZ M, SwanJ WACS Nano, 2019, 13764.

[25]

LiljeströmV, ChenC, DommersnesP, FossumJ O, GröschelA HCurr. Opin. Colloid Interface Sci., 2019, 4025.

[26]

ElismailiM, BécuL, XuH, Gonzalez-RodriguezDSoft Matter, 2021, 173234.

[27]

WeiH, Pascual-HerreroH, SelmaniS, MarroquinS, ReginatoG D, GuanZ B, RaganRJ. Colloid Interface Sci., 2024, 666629.

[28]

GrünwaldM, TricardS, WhitesidesG M, GeisslerP LSoft Matter, 2016, 121517.

[29]

ZhangK, LuZ Y, ZhaoLPolymer, 2021, 235124234.

[30]

XuD, ZhaoL, ZhangK, LuZ YSci. China Chem., 2019, 621666.

[31]

XuD, ShiR, SunZ Y, LuZ YJ. Chem. Phys., 2021, 154144904.

[32]

ChenY, ShullK RMacromolecules, 2017, 503637.

[33]

LuM Z, LiuF, TanR, XiaoZ H, DongX H, WangH, TangL Q, ChenT J, WuZ L, HongW, SunT LChem. Mater., 2022, 3410995.

[34]

KawamuraA, TakahashiR, MiyataTGels, 2024, 10288.

[35]

GrootR D, WarrenP BJ. Chem. Phys., 1997, 1074423.

[36]

CurkTJ. Chem. Phys., 2024, 160174115.

[37]

BlagojevicN, HeckM, WilhelmM, MüllerMMacromolecules, 2024, 578470.

[38]

HoogerbruggeP J, KoelmanJ M V AEurophys. Lett., 1992, 19155.

[39]

EspanolP, WarrenPEurophys. Lett., 1995, 30191.

[40]

GrootR D, MaddenT JJ. Chem. Phys., 1998, 1088713.

[41]

GrootR D, MaddenT J, TildesleyD JJ. Chem. Phys., 1999, 1109739.

[42]

HuqN A, BaileyT SMacromolecules, 2018, 517734.

[43]

GaoH, ShiR, ZhuY, QianH, LuZChem. Res. Chinese Universities, 2022, 38653.

[44]

BianT, ChuZ, KlajnRAdv. Mater., 2020, 321905866.

[45]

Liang S. F., Yuan C. R., Nie C., Liu Y. Z., Zhang D. C., Xu W. C., Liu C. W., Xu G. F., Wu S., Adv. Mater., 2024, 36.

[46]

ArchutA, AzzelliniG C, BalzaniV, De ColaL, VögtleFJ. Am. Chem. Soc., 1998, 12012187.

[47]

ZhuY L, LiuH, LiZ W, QianH J, MilanoG, LuZ YJ. Comput. Chem., 2013, 342197.

[48]

GaoH M, YuZ C, ZhangX Z, YuX K, XingJ Y, ZhuY L, QianH J, LuZ YChin. J. Struct. Chem., 2024, 43100266

[49]

TagliazucchiM, WeissE A, SzleiferIProc. Natl. Acad. Sci. USA, 2014, 1119751.

[50]

GrötschR K, WanzkeC, SpeckbacherM, AngiA, RiegerB, BoekhovenJJ. Am. Chem. Soc., 2019, 1419872.

[51]

AllenM P, TildesleyD JComputer Simulation of Liquids, 20172nd edNew York. Oxford University Press. .

[52]

DaiX, WanH X, ZhangX, WeiW, ChenW, ZhangL, LiJ, YanL TChem. Res. Chinese Universities, 2023, 39709.

[53]

PigardL, MüllerMPhys. Rev. Lett., 2019, 122237801.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/