Fabrication of Binder-free Hierarchical ZSM-5 Zeolite Monoliths via Steam-assisted Crystallization

Xuemei Su , Yaquan Wang , Lingzhen Bu , Xian Zhang , Yaoning Li , Juncai Sang , Guomei Ren , Muhan Wen

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 919 -928.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 919 -928. DOI: 10.1007/s40242-025-5038-4
Article
research-article

Fabrication of Binder-free Hierarchical ZSM-5 Zeolite Monoliths via Steam-assisted Crystallization

Author information +
History +
PDF

Abstract

Binder-free hierarchical ZSM-5 zeolite monoliths were synthesized via a simple steam-assisted crystallization process. Many characterization techniques, including X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), N2 adsorption-desorption, NH3 temperature-programmed desorption (NH3-TPD), pyridine adsorbed Fourier transform infrared spectra (Py-IR) and thermogravimetric analysis (TGA), were utilized to investigate the crystallization process and physicochemical properties and the monolith catalysts were studied for the cracking of n-hexane to olefins (HTO). The results indicated that the ZSM-5 zeolite monoliths featured high crystallinity composed of nano-aggregates with a microporous framework and an auxiliary mesoporous structure. The total pore volume and specific surface area of the ZSM-5 zeolite monoliths increased with the increase of tetrapropylammonium hydroxide content in the preparation. The monolith catalysts exhibited superior catalytic performance in HTO reaction compared to the control sample shaped with binder. Light olefins selectivity of the ZSM-5 zeolite monoliths increased up to 48% in the subsequent stage of the reaction. This work offers a cost-effective, facile, and scalable method for the preparation of catalysts for the petrochemical industry.

Keywords

ZSM-5 / Binder-free / Monolith / Steam-assisted crystallization / n-Hexane cracking

Cite this article

Download citation ▾
Xuemei Su, Yaquan Wang, Lingzhen Bu, Xian Zhang, Yaoning Li, Juncai Sang, Guomei Ren, Muhan Wen. Fabrication of Binder-free Hierarchical ZSM-5 Zeolite Monoliths via Steam-assisted Crystallization. Chemical Research in Chinese Universities, 2025, 41(4): 919-928 DOI:10.1007/s40242-025-5038-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AmghizarI, VandewalleL A, Van GeemK M, MarinG BEngineering, 2017, 3171

[2]

MagajiS, HussainI, MalaibariZ, HossainM M, QureshiZ S, AhmedSChem. Rec., 2024, 2411

[3]

GholamiZ, GholamiF, TislerZ, TomasM, VakiliMEnergies, 2021, 141089

[4]

FakhroleslamM, SadrameliS MInd. Eng. Chem. Res., 2020, 5912288

[5]

GuoD R, ZhuM H, YangZ X, HanY FInd. Eng. Chem. Res., 2024, 6310965

[6]

RownaghiA A, RezaeiF, HedlundJChem. Eng. J., 2012, 191528

[7]

HouX, QiuY, ZhangX W, LiuG ZChem. Eng. J., 2017, 321572

[8]

RahimiN, KarimzadehRAppl. Catal. Gen., 2011, 3981

[9]

MartínezC, CormaACoord. Chem. Rev., 2011, 2551558

[10]

LiuP, WuQ M, ChenZ H, XiaoF SChem. Res. Chinese Universities, 2024, 40646

[11]

ZhengM D, ChenY, LiuZ, LyuJ M, YeB, SunM H, ChenL H, SuB LChem. Res. Chinese Universities, 2024, 40704

[12]

IshiharaA, KimuraK, OwakiA, InuiK, HashimotoT, NasuHCatal. Commun., 2012, 28163

[13]

HeX Y, GeT G, HuaZ, ZhouJ, LvJ, ZhouJ L, LiuZ C, ShiJ LACS Appl. Mater. Interfaces, 2016, 8: 7118-24

[14]

ZhuJ L, YanS Y, QianY, ZhuX D, YangFMicroporous Mesoporous Mater., 2023, 351112465

[15]

HargreavesJ S J, MunnochA LCatal. Sci. Technol., 2013, 31165

[16]

MitchellS, MichelsN L, KunzeK, Pérez-RamírezJNat. Chem., 2012, 4825

[17]

DevadasP, KinageA K, ChoudharyV RStud. Surf. Sci. Catal., 1998, 113425

[18]

ChengX W, WangJ, GuoJ, LongY CActa Chim. Sin., 2008, 662099

[19]

LiX, LiW B, RezaeiF, RownaghiAChem. Eng. J., 2018, 333545

[20]

MartinA, BerndtH, LohseU, WolfUJ. Chem. Soc. Faraday Trans., 1993, 891277

[21]

ZhaoT T, WangY Q, SunC, ZhaoA J, WangC, ZhangX, ZhaoJ J, WangZ Y, LuJ X, WuS H, LiuW RMicroporous Mesoporous Mater., 2020, 292109731

[22]

DesmursL, CammaranoC, SachseA, GimelloO, GaillardT, BarberatS, BlanquerS, HuleaV, GalarneauAMicroporous Mesoporous Mater., 2024, 377113201

[23]

LiB, HuZ J, KongB, WangJ X, LiW, SunZ K, QianX F, YangY S, ShenW, XuH L, ZhaoD YChem. Sci., 2014, 51565

[24]

ChenJ W, LiuF F, LiY F, DouY S, LiuS M, XiaoL JR. Soc. Open Sci., 2020, 7200981

[25]

CaiR, LiuY, GuS, YanY SJ. Am. Chem. Soc., 2010, 13212776

[26]

PanF, LuX C, ZhuQ S, ZhangZ M, YanY, WangT Z, ChenS WJ. Mater. Chem. A, 2014, 220667

[27]

XieH J, XuW, RanS A, LiX L, LiB, LiY Y, WangLMicroporous Mesoporous Mater., 2022, 345112238

[28]

WangD J, LiuZ N, XieZ KJ. Inorg. Mater., 2008, 23592

[29]

WuS H, WangY Q, SunC, ZhaoT T, ZhaoJ J, WangZ Y, LiuW R, LuJ X, ShiM X, ZhaoA J, BuL Z, WangZ Q, YangM Y, ZhiY QChem. Eng. J., 2021, 417129172

[30]

BuL Z, WangY Q, LiuW R, ChuK L, GuoN D, HuangY T, QuL P, SuX M, ZhangX, LiY NAppl. Catal. Gen., 2023, 665119393

[31]

ChenH B, WangY Q, MengF J, LiH Y, WangS G, SunC, WangS H, WangXRSC Adv., 2016, 676642

[32]

NarayananS, VijayaJ J, SivasankerS, RagupathiC, SankaranarayananT M, KennedyL JJ. Porous Mater., 2016, 23741

[33]

XiaoX, SunB, WangP, FanX Q, KongL, XieZ A, LiuB N, ZhaoZMicroporous Mesoporous Mater., 2022, 330111621

[34]

ChuN B, YangJ H, LiC Y, CuiJ Y, ZhaoQ Y, YinX Y, LuJ M, WangJ QMicroporous Mesoporous Mater., 2009, 118169

[35]

GuoY P, WangH J, GuoY J, GuoL H, ChuL F, GuoC XChem. Eng. J., 2011, 166391

[36]

JavdaniA, AhmadpourJ, YaripourFMicroporous Mesoporous Mater., 2019, 284443

[37]

GeT G, HuaZ L, HeX Y, LvJ, ChenH R, ZhangL X, YaoH L, LiuZ W, LinC C, ShiJ LChem. Eur. J., 2016, 227895

[38]

LiQ H, YangS Y, NavrotskyAMicroporous Mesoporous Mater., 2003, 65137

[39]

ChristensenC H, SchmidtI, CarlssonA, JohannsenK, HerbstKJ. Am. Chem. Soc., 2005, 1278098

[40]

LinL F, ZhaoS F, ZhangD W, FanH, LiuY M, HeM YACS Catal., 2015, 54048

[41]

LiuW W, SongM X, WangX P, WangC Y, ZhangC GAppl. Catal. Gen., 2023, 663119270

[42]

KimY T, JungK-D, ParkE DMicroporous Mesoporous Mater., 2010, 13128

[43]

BuscaGChem. Rev., 2007, 1075366

[44]

CormaAChem. Rev., 1995, 95559

[45]

HuC, FuW H, YuanZ Q, LiuC, WangZ D, YangW MChem. Res. Chinese Universities, 2025, 41113

[46]

RajanN P, RaoG S, PavankumarV, CharyK V RCatal. Sci. Technol., 2014, 481

[47]

ShettiV N, KimJ, SrivastavaR, ChoiM, RyooRJ. Catal., 2008, 254296

[48]

WuT, LiS J, YuanG M, ZhaoD J, ChenS L, XuJ, HuaT YFuel Process. Technol., 2018, 173143

[49]

SunY, MaT, ZhangL M, SongY, ShangY S, ZhaiY L, GongY J, DuanA JMol. Catal., 2020, 484110770

[50]

SieS TInd. Eng. Chem. Res., 1992, 311881

[51]

JavaidR, UrataK, FurukawaS, KomatsuTAppl. Catal. Gen., 2015, 491100

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/