Present and Future of Monovalent All-organic Batteries

Kyungsoo Shin , Gengyou Cao , Xiaolong Zhou , Jinglun Yang , Fangyuan Kang , Yongbing Tang , Qichun Zhang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 414 -431.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 414 -431. DOI: 10.1007/s40242-025-5036-6
Review

Present and Future of Monovalent All-organic Batteries

Author information +
History +
PDF

Abstract

Due to the growing demand on sustainable and environmentally friendly energy storage systems, all-organic batteries (AOBs) are attracting wide attention as promising alternatives to traditional lithium-ion batteries (LIBs). This review comprehensively covers the latest advances in organic materials and technologies in monovalent AOBs based on lithium, sodium, and potassium ions. It explores the numerous benefits of organic electrode materials, addresses several limits including energy density, cycle life, and technological maturity, and presents diverse techniques, such as organic molecule design, polymerization, and symmetrical batteries to mitigate these challenges. Furthermore, this review also investigates the potential of proprietary sodium- and potassium-ion AOBs, which are both resource-abundant and cost-effective, as energy storage systems alongside LIBs. It aims to provide comprehensive guidelines for future AOBs research, with a particular focus on achieving high performance, improving sustainability, and facilitating commercialization.

Keywords

All-organic battery (AOB) / Monovalent ion battery / Organic material / Sustainable energy storage / Low-cost battery / Chemical Sciences / Macromolecular and Materials Chemistry / Physical Chemistry (incl. Structural) / Engineering / Materials Engineering

Cite this article

Download citation ▾
Kyungsoo Shin, Gengyou Cao, Xiaolong Zhou, Jinglun Yang, Fangyuan Kang, Yongbing Tang, Qichun Zhang. Present and Future of Monovalent All-organic Batteries. Chemical Research in Chinese Universities, 2025, 41(3): 414-431 DOI:10.1007/s40242-025-5036-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TranN, TaQ T H, NguyenP K TInt. J. Energy Res., 2022, 46: 17926.

[2]

LehtolaT, ZahediASust. Energy Technol. Assess., 2019, 35: 25

[3]

MrozikW, RajaeifarM A, HeidrichO, ChristensenPEnergy Environ. Sci., 2021, 14: 6099.

[4]

Dehghani-SanijA, TharumalingamE, DusseaultM, FraserRRenew. Sust. Energy Rev., 2019, 104: 192.

[5]

KimJ, KimY, YooJ, KwonG, KoY, KangKNat. Rev. Mater., 2023, 8: 54.

[6]

LuY, ChenJNat. Rev. Chem., 2020, 4: 127.

[7]

KimT, SongW, SonD-Y, OnoL K, QiYJ. Mater. Chem. A, 2019, 7: 2942.

[8]

Rivera-BarreraJ P, Muñoz-GaleanoN, Sarmiento-MaldonadoH OElectronics, 2017, 6: 102.

[9]

LiM, LuJ, ChenZ, AmineKAdv. Mater., 2018, 30: 1800561.

[10]

ChomboP V, LaoonualYJ. Power Sources, 2020, 478: 228649.

[11]

YangY, BremnerS, MenictasC, KayMRenew. Sust. Energy Rev., 2018, 91: 109.

[12]

DivyaK C, ØstergaardJElectr. PowerSyst. Res., 2009, 79: 511.

[13]

DongQ, NarenT, ZhangL, JiangW, XueM, WangX, ChenL, LeeC S, ZhangQAngew. Chem. Int. Ed., 2024, 63: e202405426.

[14]

TongY, SunZ, WangJ, HuangW, ZhangQSmartMat, 2022, 3: 685.

[15]

XieJ, ChenW, LongG, GaoW, XuZ J, LiuM, ZhangQJ. Mater. Chem. A, 2018, 6: 12985.

[16]

ZubiG, Dufo-LópezR, CarvalhoM, PasaogluGRenew. Sust. Energy Rev., 2018, 89: 292.

[17]

SNS Insider, Lithium-Ion Batteries Market Report, https://www.snsinsider.com/reports/lithium-ion-batteries-market-2721.

[18]

ZengX, LiM, Abd El-HadyD, AlshitariW, Al-BogamiA S, LuJ, AmineKAdv. Energy Mater., 2019, 9: 1900161.

[19]

LyuY, WuX, WangK, FengZ, ChengT, LiuY, WangM, ChenR, XuL, ZhouJAdv. Energy Mater., 2021, 11: 2000982.

[20]

LinJ, LiW, ChenZACS Energy Lett., 2025, 10: 947.

[21]

ChenY, KangY, ZhaoY, WangL, LiuJ, LiY, LiangZ, HeX, LiX, TavajohiNJ. Energy Chem., 2021, 59: 83.

[22]

AbuS M, HannanM, LipuM H, MannanM, KerP J, HossainM, MahliaT IJ. Clean. Prod., 2023, 394: 136246.

[23]

MuenchS, WildA, FriebeC, HauplerB, JanoschkaT, SchubertU SChem. Rev., 2016, 116: 9438.

[24]

XieJ, ZhangQMater. Today Energy, 2020, 18: 100547.

[25]

XiongW, HuangW, ZhangM, HuP, CuiH, ZhangQChem. Mater., 2019, 31: 8069.

[26]

HuJ, HongY, GuoM, HuY, TangW, XuS, JiaS, WeiB, LiuS, FanC, ZhangQEnergy Storage Mater., 2023, 56: 267.

[27]

ZhangW, HuangW, ZhangQChem. Eur. J., 2021, 27: 6131.

[28]

BhosaleM E, ChaeS, KimJ M, ChoiJ-YJ. Mater. Chem. A, 2018, 6: 19885.

[29]

HongY, HuJ, TangW, WeiB, GuoM, JiaS, FanCEnergy Storage Mater., 2022, 52: 61.

[30]

YuanS, HuangX, KongT, YanL, WangYAcc. Chem. Res., 2024, 145: 25604

[31]

SongZ, ZhouHEnergy Environ. Sci., 2013, 6: 2280.

[32]

EsserB, DolhemF, BecuweM, PoizotP, VladA, BrandellDJ. Power Sources, 2021, 482: 228814.

[33]

SolomonS, QinD, ManningMClimate Change 2007, 2007CambridgeCambridge University Press

[34]

LiT, WangL, LiJChem. Eng. J., 2022, 442: 136232.

[35]

FriebeC, Lex-BalducciA, SchubertU SChemSusChem, 2019, 12: 4093.

[36]

WuY, ZengR, NanJ, ShuD, QiuY, ChouS LAdv. Energy Mater., 2017, 7: 1700278.

[37]

WangH, LinJ, ShenZ XJ. Sci.: Adv. Mater. Devices, 2016, 1: 225

[38]

NeversD R, BrushettF R, WheelerD RJ. Power Sources, 2017, 352: 226.

[39]

LiW, MaH, TangW, FanK, JiaS, GaoJ, WangM, WangY, CaoB, FanCNat. Commun., 2024, 15: 9533.

[40]

Shanghai Metals Market, Lithium Battery Cathode Precursor and MaterialPrices, https://www.metal.com/price/New-Energy/Lithium-Battery-Cathode-Precursor-and-Material.

[41]

VaalmaC, BuchholzD, WeilM, PasseriniSNat. Rev. Mater., 2018, 3: 1.

[42]

ZhaoL, ZhangT, LiW, LiT, ZhangL, ZhangX, WangZEng., 2023, 24: 172.

[43]

MinX, XiaoJ, FangM, WangW A, ZhaoY, LiuY, AbdelkaderA M, XiK, KumarR V, HuangZEnergy Environ. Sci., 2021, 14: 2186.

[44]

ZhangW, LiuY, GuoZSci. Adv., 2019, 5: eaav7412.

[45]

ZhuL, DingG, XieL, CaoX, LiuJ, LeiX, MaJChem. Mater., 2019, 31: 8582.

[46]

GengJ, BonnetJ-P, RenaultS, DolhemF, PoizotPEnergy Environ. Sci., 2010, 3: 1929.

[47]

SongZ, ZhanH, ZhouYAngew. Chem. Int. Ed., 2010, 49: 8444.

[48]

SpeerM E, KolekM, JassoyJ J, HeineJ, WinterM, BiekerP M, EsserBChem. Commun., 2015, 51: 15261.

[49]

WildA, StrumpfM, HäuplerB, HagerM D, SchubertU SAdv. Energy Mater., 2017, 7: 1601415.

[50]

ZhaoH, WangJ, ZhengY, LiJ, HanX, HeG, DuYAngew. Chem., 2017, 129: 15536.

[51]

KimJ, KimH, LeeS, KwonG, KangT, ParkH, TamwattanaO, KoY, LeeD, KangKJ. Mater. Chem. A, 2021, 9: 14485.

[52]

SuguroM, IwasaS, KusachiY, MoriokaY, NakaharaKMacromol. Rapid Commun., 2007, 28: 1929.

[53]

WangS, LiF, EasleyA D, LutkenhausJ LNat. Mater., 2019, 18: 69.

[54]

OyaizuK, NishideHAdv. Mater., 2009, 21: 2339.

[55]

XieJ, WangZ, XuZ J, ZhangQAdv. Energy Mater., 2018, 8: 1703509.

[56]

PoizotP, GaubicherJ, RenaultS, DuboisL, LiangY, YaoYChem. Rev., 2020, 120: 6490.

[57]

LyuH, SunX-G, DaiSAdv. Energy Sustain. Res., 2021, 2: 2000044.

[58]

DuW, DuX, MaM, HuangS, SunX, XiongLAdv. Funct. Mater., 2022, 32: 2110871.

[59]

SunT, XieJ, GuoW, LiD S, ZhangQAdv. Energy Mater., 2020, 10: 1904199.

[60]

DaiG, WangX, QianY, NiuZ, ZhuX, YeJ, ZhaoY, ZhangXEnergy Storage Mater., 2019, 16: 236.

[61]

JiangS, LiW, XieY, YanX, ZhangK, JiaZChem. Eng. J., 2022, 434: 134651.

[62]

ChenY, WangCAcc. Chem. Res., 2020, 53: 2636.

[63]

TanS, JiY J, ZhangZ R, YangYChemPhysChem, 2014, 15: 1956.

[64]

LuoC, WangJ, FanX, ZhuY, HanF, SuoL, WangCNano Energy, 2015, 13: 537.

[65]

WanF, WuX-L, GuoJ-Z, LiJ-Y, ZhangJ-P, NiuL, WangR-SNano Energy, 2015, 13: 450.

[66]

MantripragadaB S, BadamR, MatsumiNACS Appl. Energy Mater., 2022, 5: 6903.

[67]

SunH, LiJ, LiangW, GongX, JingA, YangW, LiuH, RenSSmall Methods, 2024, 8: 2301335.

[68]

DasS, HeasmanP, BenT, QiuSChem. Rev., 2017, 117: 1515.

[69]

YaoZ, TangW, WangX, WangC, YangC, FanCJ. Power Sources, 2020, 448: 227456.

[70]

LiZ, JiaQ, ChenY, FanK, ZhangC, ZhangG, XuM, MaoM, MaJ, HuW, WangCAngew. Chem. Int. Ed., 2022, 61: e202207221.

[71]

WangS, WangL, ZhangK, ZhuZ, TaoZ, ChenJNano Lett., 2013, 13: 4404.

[72]

IordacheA, DelhorbeV, BardetM, DuboisL, GutelT, PicardLACS Appl. Mater. Interfaces, 2016, 8: 22762.

[73]

ZhangY, SunZ, KongX, LinY, HuangWJ. Mater. Chem. A, 2021, 9: 26208.

[74]

WildA, StrumpfM, HäuplerB, HagerM D, SchubertU SAdv. Energy Mater., 2016, 7: 1601415.

[75]

SakaushiK, HosonoE, NickerlG, ZhouH, KaskelS, EckertJJ. Power Sources, 2014, 245: 553.

[76]

CasadoN, MantioneD, ShanmukarajD, MecerreyesDChemSusChem, 2020, 13: 2464.

[77]

ZhaoY, WuM, ChenH, ZhuJ, LiuJ, YeZ, ZhangY, ZhangH, MaY, LiC, ChenYNano Energy, 2021, 86: 106055.

[78]

DongX, GuoZ, GuoZ, WangY, XiaYJoule, 2018, 2: 902.

[79]

DengW, LiangX, WuX, QianJ, CaoY, AiX, FengJ, YangHSci. Rep., 2013, 3: 2671.

[80]

ZhuX, ZhaoR, DengW, AiX, YangH, CaoYElectrochim. Acta, 2015, 178: 55.

[81]

WangS, WangL, ZhuZ, HuZ, ZhaoQ, ChenJAngew. Chem. Int. Ed., 2014, 53: 5892.

[82]

HuJ, LiangR, TangW, HeH, FanCInt. J. Hydrogen Energy, 2020, 45: 24573.

[83]

LiD, TangW, YongC Y, TanZ H, WangC, FanCChemSusChem, 2020, 13: 1991.

[84]

BandaH, DamienD, NagarajanK, HariharanM, ShaijumonM MJ. Mater. Chem. A, 2015, 3: 10453.

[85]

ZhouG, MoL, ZhouC, WuY, LaiF, LvY, MaJ, MiaoY-E, LiuTChem. Eng. J., 2021, 420: 127597.

[86]

ZhaoQ, WangJ, LuY, LiY, LiangG, ChenJAngew. Chem. Int. Ed., 2016, 55: 12528.

[87]

TangM, WuY, ChenY, JiangC, ZhuS, ZhuoS, WangCJ. Mater. Chem. A, 2019, 7: 486.

[88]

TongZ, TianS, WangH, ShenD, YangR, LeeC SAdv. Funct. Mater., 2019, 30: 1907656.

[89]

HuY, TangW, YuQ, WangX, LiuW, HuJ, FanCAdv. Funct. Mater., 2020, 30: 2000675.

[90]

WangC, TangW, WangX L, ZhouY H, LiD, JiaS, CaoB, FanCElectrochim. Acta, 2021, 365: 137365.

[91]

LiuS, XiongM, TangW, HuY, YanY, XuL, FanCACS Appl. Mater. Interfaces, 2021, 13: 38315.

[92]

HuJ, TangW, LiuS, HuY, YanY, LaiH, XuL, FanCSci. China Mater., 2021, 64: 1598.

[93]

QinK, HolguinK, HuangJ, MohammadiroudbariM, ChenF, YangZ, XuG L, LuoCAdv. Sci., 2022, 9: e2106116.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/