Efficient CO2 Photoreduction into Solar Fuels over MoO3−x/COF S-Scheme Photocatalyst

Chuang Liu , Tengyuan Gao , Guohong Wang , Qiang Cheng , Kai Wang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 726 -733.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 726 -733. DOI: 10.1007/s40242-025-5033-9
Article
research-article

Efficient CO2 Photoreduction into Solar Fuels over MoO3−x/COF S-Scheme Photocatalyst

Author information +
History +
PDF

Abstract

The restricted electron transport and slow surface reaction kinetics are two fundamental limitations affecting the photocatalytic efficiency of covalent organic frameworks (COFs). To address these challenges and enhance charge separation, this study utilizes an in-situ growth strategy to incorporate MoO3−x into COF (denoted as BTTA), forming MoO3−x/COF composites (MOCOF). These composites demonstrate significantly enhanced solar fuel performance through photocatalytic CO2 reduction. In-situ irradiated X-ray photoelectron spectroscopy and electron spin resonance analyses confirm the presence of an S-scheme carrier transfer mechanism, which effectively spatially separates photogenerated carriers with substantial redox potential. The nanoarchitecture of MOCOF-2 demonstrates the capability to efficiently convert CO2 into valuable CO and CH4 fuels, achieving reduction rates of 8.7 and 4.6 µmol·g−1·h−1, respectively. This study provides a valuable reference for the rational design of COF-based S-scheme heterojunction photocatalysts aimed at solar fuel production.

Keywords

Covalent organic framework / S-Scheme heterojunction / Photocatalysis / Solar fuel / Interfacial engineering

Cite this article

Download citation ▾
Chuang Liu, Tengyuan Gao, Guohong Wang, Qiang Cheng, Kai Wang. Efficient CO2 Photoreduction into Solar Fuels over MoO3−x/COF S-Scheme Photocatalyst. Chemical Research in Chinese Universities, 2025, 41(4): 726-733 DOI:10.1007/s40242-025-5033-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YouC J, WangC C, CaiM J, LiuY P, ZhuB K, LiS JActa Phys. Chim. Sin., 2024, 402407014

[2]

DuY, ZhongZ Y, ShiZ X, ZhouL N, PanS, XuX N, LiuY S, XiongD B, WangKJ. Colloid Interface Sci., 2025, 683631

[3]

XuX T, ShaoC F, ZhangJ F, WangZ L, DaiKActa Phys. Chim. Sin., 2024, 402309031

[4]

LiB Y, OuH H, ChenS H, SuY Q, WangD SChem. Res. Chinese Universities, 2023, 39527

[5]

WangK, DuY, LiY, WuX Y, HuH Y, WangG H, XiaoY, ChouS L, ZhangG KCarbon Energy, 2023, 5e264

[6]

XiaoM J, LiD, WeiY Z, HeY L, WangZ M, YuR BChem. Res. Chinese Universities, 2024, 40513

[7]

XieF, YuanC C, TanH Y, MoshfeghA Z, ZhuB C, YuJ GActa Phys. Chim. Sin., 2024, 402407013

[8]

KouM P, WangY Y, XuY X, YeL Q, HuangY P, JiaB H, LiH, RenJ Q, DengY, ChenJ H, ZhouY, LeiK, WangL, LiuW, HuangH W, MaT YAngew. Chem. Int. Ed., 2022, 61e202200413

[9]

WangC X, LyuP B, ChenZ, XuY XJ. Am. Chem. Soc., 2023, 14512745

[10]

HuangK H, ChenD J, ZhangX, ShenR C, ZhangP, XuD F, LiXActa Phys. Chim. Sin., 2024, 402407020

[11]

ChengJ Z, WanS J, CaoS WAngew. Chem. Int. Ed., 2023, 62e202310476

[12]

RenY M, XuY XChem. Soc. Rev., 2024, 531823

[13]

LiL J, XuL P, HuZ F, YuJ CAdv. Funct. Mater., 2021, 312106120

[14]

ChenY Z, LiuR Y, GuoY Y, WuG, SumT C, YangS W, JiangD LNat. Synth., 2024, 3998

[15]

LiuR Y, ChenY Z, YuH D, PoložijM, GuoY Y, SumT C, HeineT, JiangD LNat. Catal., 2024, 7195

[16]

YangT, JinY W, WangY C, KongA G, ChenY, ZouY Y, LiuC, WeiG F, YuC ZAdv. Funct. Mater., 2023, 332300714

[17]

MaZ X, YinH, LyuP B, XuY XAdv. Energy Mater., 2024, 14202401619

[18]

ChenD, ChenW B, WuY T, WangL, WuX J, XuH X, ChenLAngew. Chem. Int. Ed., 2023, 135e202217479

[19]

MouY, WuX D, QinC C, ChenJ Y, ZhaoY L, JiangL B, ZhangC, YuanX Z, AngE H, WangHAngew. Chem. Int. Ed., 2023, 62e202309480

[20]

SongD M, XuW H, LiJ, ZhaoJ L, ShiQ, LiF, SunX, WangNChin. J. Catal., 2022, 432425

[21]

XiaY, ZhangK Y, YangH, ShiL J, YQActa Phys. Chim. Sin., 2024, 402407012

[22]

BenH J, YanG J, LiuH Y, LingC C, FanY, ZhangX JAdv. Funct. Mater., 2022, 322104519

[23]

YangW X, ZhangJ F, XuQ L, YangY, ZhangL JActa Phys. Chim. Sin., 2024, 402312014

[24]

WangJ P, YuY, CuiJ Y, LiX R, ZhangY L, WangC, YuX L, YeJ HAppl. Catal. B: Environ., 2022, 301120814

[25]

ZhangH Z, LiuJ J, ZhangY, ChengB, ZhuB C, WangL XJ. Mater. Sci. Technol., 2023, 166241

[26]

XiaoQ, LiuT, ZhouQ H, LiL Y, ChangC T, GaoD W, LiD Y, YouF FChem. Res. Chinese Universities, 2024, 40484

[27]

WangK, LiY, LiJ, ZhangG KAppl. Catal. B: Environ., 2020, 263117730

[28]

ShaoX L, LiK, LiJ P, ChengQ, WangG H, WangKChin. J. Catal., 2023, 51193

[29]

ZhaoZ W, WangZ L, ZhangJ F, ShaoC F, DaiK, FanK, LiangC HAdv. Funct. Mater, 2023, 332214470

[30]

LiK, MeiJ L, LiJ P, LiuY S, WangG H, HuD, YanS D, WangKSci. China Mater., 2024, 67484

[31]

DongK X, ShenC Q, YanR Y, LiuY P, ZhuangC Q, LiS JActa Phys. Chim. Sin., 2024, 402310013

[32]

WuX H, TanL H, ChenG Q, KangJ Y, WangG HSci. China Mater., 2024, 67444

[33]

LiK, LiuC, LiJ, WangG H, WangKActa Phys. Chim. Sin., 2024, 402403009

[34]

LiS J, RongK, WangX Q, ShenC Q, YangF, ZhangQ HActa Phys. Chim. Sin., 2024, 402403005

[35]

WangK, FengX Z, ShangguanY Z, WuX Y, ChenHChin. J. Catal., 2022, 43246

[36]

ShaoX L, WangK, PengL J, LiK, WenH Z, LeX Y, WuX H, WangG HColloid Surf. Physicochem. Eng. Asp., 2022, 652129846

[37]

HuangY Y, YangH, LuX Y, ChenM, ShiW DChin. J. Catal., 2024, 58105

[38]

ZhaoW, DingM, YangP X, WangQ, ZhangK F, ZhanX W, YuY, LuoQ Q, GaoS, YangJ L, XieYEES. Catal., 2023, 136

[39]

ZhangH B, WangY, ZuoS W, ZhouW, ZhangJ, LouX W DJ. Am. Chem. Soc., 2021, 1432173

[40]

SuB, KongY H, WangS B, ZuoS W, LinW, FangY X, HouY D, ZhangG G, ZhangH B, WangX CJ. Am. Chem. Soc., 2023, 14527415

[41]

Li J., Chai Q. Q., Niu R. R., Pan W. F., Chen Z. Q., Wang L., Wang K., Liu Z. Y., Liu Y. F., Xiao Y., Liu B., Carbon Energy, 2024, e598.

[42]

LiX D, LiangL, SunY F, XuJ Q, JiaoX C, XuX L, JuH X, PanY, ZhuJ F, XieYJ. Am. Chem. Soc., 2018, 141423

[43]

LiJ, PanW, LiuQ, ChenZ, ChenZ, FengX, ChenHJ. Am. Chem. Soc., 2021, 1436551

[44]

Li J., Liu X. L., Wu X., Liu Z. Y., Zhao Z. W., Liu Y. F., Dou S. X., Xiao Y., Adv. Sci., 2024, 2405668.

[45]

WangK, QinH T, LiJ, ChengQ, ZhuY F, HuH Y, PengJ, ChenS Q, WangG H, ChouS L, DouS X, XiaoYAppl. Catal. B: Environ., 2023, 332122763

[46]

WangK, LiuC, LiJ P, ChengQ, LiuB, LiJAppl. Catal. B: Environ., 2025, 361124560

[47]

YaoX T, ZhangR Q, ZhuM H, ZhangD F, PuX P, LiuJ C, LiH S, CaiP QAppl. Surf. Sci., 2024, 645158890

[48]

LiCF, GuoRT, ZhangZ R, WuT, LiuY L, ZhouZ C, AisanjiangM, PanW GJ. Colloid Interface Sci., 2023, 650983

[49]

YuX R, QiuP, WangY C, HeB, XuX R, ZhuH L, DingJ, LiuX Q, LiZ, WangYJ. Colloid Interface Sci., 2023, 640775

[50]

ZhangL L, LiR, GuoL J, CuiL Y, ZhangX C, WangY W, WangY F, JianX, GaoX M, FanC M, WangJ C, LiuJ XACS Catal., 2024, 145696

[51]

KimH S, CookJ B, LinH, KoJ S, TolbertS H, OzolinsV, DunnBNat. Mater., 2016, 16454

[52]

WuX, ZhangW L, LiJ, XiangQ J, LiuZ Y, LiuBAngew. Chem. Int. Ed., 2022, 62e202213124

[53]

YangY, LiuJ J, GuM L, ChengB, WangL X, YuJ GAppl. Catal. B: Environ., 2023, 333122780

[54]

Diaz-DroguettD E, El FarR, FuenzalidaV M, CabreraA LMater. Chem. Phys., 2012, 134631

[55]

XiY M, ZhangX W, ShenY, DongW R, FanZ X, WangK F, ZhongS X, BaiSAppl. Catal. B: Environ., 2021, 297120411

[56]

WuJ, LiX D, ShiW, LingP Q, SunY F, JiaoX C, GaoS, LiangL, XuJ Q, YanW S, WangC M, XieYAngew. Chem. Int. Ed., 2018, 1308855

[57]

WangK, ShaoX L, ZhangK J, WangJ, WuX H, WangH KAppl. Surf. Sci., 2022, 596153444

[58]

MengA Y, ChengB, TanH Y, FanJ J, SuC L, YuJ GAppl. Catal. B: Environ., 2021, 289120039

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/