Mo2CTx Supported Ruthenium Nanoparticles as Efficient Cathode Catalyst for Li-CO2 Battery with High Capacity and Long Cycle Life

Xi Gong , Hao Li , Ke Fan , Zezhou Lin , Jing Zhang , Haitao Huang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 511 -518.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 511 -518. DOI: 10.1007/s40242-025-5032-x
Article

Mo2CTx Supported Ruthenium Nanoparticles as Efficient Cathode Catalyst for Li-CO2 Battery with High Capacity and Long Cycle Life

Author information +
History +
PDF

Abstract

Li-CO2 batteries have garnered considerable attention due to their high energy density and their ability to utilize CO2 resources. However, the generation of insulating discharge product Li2CO3 severely weakens its cyclability, which places high demands on the cathode catalyst in Li-CO2 batteries. This study focuses on the development of Ru nanoparticles modified Mo2CTx as the cathode for Li-CO2 batteries, which is integrated with a high surface area, abundant active sites, and enhanced conductivity. As a result, the Ru@Mo2CTx cathode achieves a remarkable discharge capacity of 20995 mA·h·g−1 and a long cycle life of 1750 h. Additionally, density functional theory calculations provide further insights into the enhancement in absorptivity with Ru introduced onto Mo2CTx. This research paves the way for manipulating the catalytic activity of Mo2CTx and reducing the amount of usage of Ru in Li-CO2 batteries.

Keywords

Catalyst / MXene / Ru nanoparticle / Long cycle life / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Xi Gong, Hao Li, Ke Fan, Zezhou Lin, Jing Zhang, Haitao Huang. Mo2CTx Supported Ruthenium Nanoparticles as Efficient Cathode Catalyst for Li-CO2 Battery with High Capacity and Long Cycle Life. Chemical Research in Chinese Universities, 2025, 41(3): 511-518 DOI:10.1007/s40242-025-5032-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XieZ J, ZhangX, ZhangZ, ZhouZAdv. Mater., 2017, 29: 1605891.

[2]

LiuY Y, ZhuH L, LiaoP Q, ChenX MChem. Res. Chinese Universities, 2024, 40: 664.

[3]

WangH, WeiP, WangJChem. Res. Chinese Universities, 2024, 40: 428.

[4]

SuiX, WuL, JiaS, JinX, SunX, HanBChem. Res. Chinese Universities, 2024, 40: 764.

[5]

LiC, GuoZ Y, YangB C, LiuY, WangY G, XiaY YAngew. Chem. Int. Ed., 2017, 56: 9126.

[6]

LiuT, ZhaoS Y, XiongQ, YuJ, WangJ, HuangG, NiM, ZhangX BAdv. Mater., 2023, 35: 2208925.

[7]

LiuY L, WangR, LyuY C, LiH, ChenL QEnergy Environ. Sci., 2014, 7: 677.

[8]

WangS, SongH C, ZhuT, ChenJ M, YuZ Q, WangP F, YuL W, XuJ, ZhouH S, ChenK JNano Energy, 2022, 100: 107521.

[9]

ZhangZ, BaiW L, WangK X, ChenJ SEnergy Environ. Sci., 2020, 13: 4717.

[10]

DengQ H, YangY, MaoC F, WangT Y, FangZ, YanW W, YinK, ZhangY WAdv. Energy Mater., 2022, 12: 2103667.

[11]

MahneN, RenfrewS E, McCloskeyB D, FreunbergerS AAngew. Chem. Int. Ed., 2018, 57: 5529.

[12]

ChenL, ZhangG, ShanW Y, LiuR, LiuH JEnviron. Sci. Technol., 2021, 55: 15380.

[13]

LuB Y, ChenB, WangD S, LiC, GaoR H, LiuY Q, MaoR, YangJ L, ZhouG MProc. Natl. Acad. Sci. USA, 2023, 120: e2216933120.

[14]

WangH, XieK Y, YouY, HouQ, ZhangK, LiN, YuW, LohK P, ShenC, WeiB QAdv. Energy Mater., 2019, 9: 1901806.

[15]

LiJ T, DaiA, AmineK, LuJSmall, 2021, 17: 2007760.

[16]

ChenB A, WangD S, ZhangB A, ZhongX W, LiuY Q, ShengJ Z, ZhangQ, ZouX L, ZhouG M, ChengH MACS Nano, 2021, 15: 9841.

[17]

YangS X, QiaoY, HeP, LiuY J, ChengZ, ZhuJ J, ZhouH SEnergy Environ. Sci., 2017, 10: 972.

[18]

LiS W, DongY, ZhouJ W, LiuY, WangJ M, GaoX, HanY Z, QiP F, WangBEnergy Environ. Sci., 2018, 11: 1318.

[19]

LiX, WangH, ChenZ X, XuH S, YuW, LiuC B, WangX W, ZhangK, XieK Y, LohK PAdv. Mater., 2019, 31: 1905879.

[20]

RenC E, ZhaoM Q, MakaryanT, HalimJ, BootaM, KotaS, AnasoriB, BarsoumM W, GogotsiYChemElectroChem, 2016, 3: 689.

[21]

LiH, FanK, XiongP, ZhouH M, LinZ Z, TaoK Y, LiuT C, GuoX Y, ZhuY, ZhuangL Y C, HanW, YangC, LiuY, LiM M J, FuM W, WangJ H, HuangH TJ. Mater. Chem. A, 2024, 12: 3449.

[22]

LeiH, ChenZ J, ZhangJ, YuWSep. Purif. Technol., 2024, 347: 127537.

[23]

HuZ, XieY Y, YuD S, LiuQ N, ZhouL M, ZhangK, LiP, HuF, LiL L, ChouS L, PengS JACS Nano, 2021, 15: 8407.

[24]

ZhaoW T, YangY, DengQ H, DaiQ Y, FangZ, FuX L, YanW W, WuL Z, ZhouYAdv. Funct. Mater., 2023, 33: 2210037.

[25]

ShiY, WeiB, LegutD, DuS Y, FranciscoJ S, ZhangR FAdv. Funct. Mater., 2022, 32: 2210218.

[26]

ThokaS, TsaiC M, TongZ Z, JenaA, WangF M, HsuC C, ChangH, HuS F, LiuR SACS Appl. Mater. Interfaces, 2020, 13: 480.

[27]

BayhanZ, El-DemellawiJ K, YinJ, KhanY, LeiY J, AlhajjiE, WangQ X, HedhiliM N, AlshareefH NSmall, 2023, 19: 2208253.

[28]

PengW, LuoM, XuX D, JiangK, PengM, ChenD C, ChanT S, TanY WAdv. Energy Mater., 2020, 10: 2001364.

[29]

HalimJ, KotaS, LukatskayaM R, NaguibM, ZhaoM Q, MoonE J, PitockJ, NandaJ, MayS J, GogotsiY, BarsoumM WAdv. Funct. Mater., 2016, 26: 3118.

[30]

LinJ, DingJ, WangH, YangX, ZhengX, HuangZ H, SongW Q, DingJ, HanX P, HuW BAdv. Mater., 2022, 34: 2200559.

[31]

Ottakam ThotiylM M, FreunbergerS A, PengZ, BruceP GJ. Am. Chem. Soc., 2013, 135: 494.

[32]

ChenB, WangD S, ZhangB, ZhongX W, LiuY Q, ShengJ Z, ZhangQ, ZouX L, ZhouG M, ChengH MACS Nano, 2021, 15: 9841.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/