Formation of Electrospun Membranes with High Resilience by In situ Crosslinking

Qing Wang , Liang Yuan , Kongying Zhu , LiXia Ren , Xiaoyan Yuan

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 620 -628.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 620 -628. DOI: 10.1007/s40242-025-5026-8
Article

Formation of Electrospun Membranes with High Resilience by In situ Crosslinking

Author information +
History +
PDF

Abstract

Elasticity of biodegradable fibrous scaffolds is one of essential requirements for soft tissue regeneration, and sufficient compliance of small-diameter vascular grafts is necessary. In this work, electrospun fibrous membranes with high resilience are prepared through blend electrospinning of poly(ε-caprolactone) (PCL)/methacrylated poly(glycerol sebacate) (PGS) and in situ photo-crosslinking with poly(ethylene glycol) diacrylate. The obtained PCL/PGS electrospun membranes have minor hemolysis, low platelet adherence, and favorable cytocompatibility. In the wet state, the PCL/PGS electrospun membranes in 5/5 or 4/6 mass ratio exhibit lowered modulus and reversible deformation with improved compliance in comparison with PCL, which can be comparable to the human saphenous vein. This study provides a feasible way to prepare electrospun fibrous scaffolds with high elasticity, that can be suitable for applications in vascular regeneration and relative soft tissue repair.

Keywords

Poly(glycerol sebacate) / Poly(ε-caprolactone) / Blend electrospinning / In situ crosslinking / Mechanical property

Cite this article

Download citation ▾
Qing Wang, Liang Yuan, Kongying Zhu, LiXia Ren, Xiaoyan Yuan. Formation of Electrospun Membranes with High Resilience by In situ Crosslinking. Chemical Research in Chinese Universities, 2025, 41(3): 620-628 DOI:10.1007/s40242-025-5026-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PedersenD D, KimS, WagnerW RJ. Biomed. Mater. Res., 2022, 110: 1460.

[2]

ChenS, WangY, YangL, ChuC, CaoS, WangZ, XueJ, YouZProg. Polym. Sci., 2023, 147: 101763.

[3]

JiaY, XuX, LuH, FatimaK, ZhangY, DuH, YangJ, ZhouX, SuiX, HouL, PangY, HeCBiomaterials, 2025, 316: 122985.

[4]

BaiS, ZhangX, ZangL, YangS, ChenX, YuanXChem. Res. Chinese Universities, 2021, 37: 394.

[5]

WangZ, ZhengW, WuY, WangJ, ZhangX, WangK, ZhaoQ, KongD, KeT, LiCBiomater. Sci., 2016, 4: 1485.

[6]

ZhuM, WuY, LiW, DongX, ChangH, WangK, WuP, ZhangJ, FanJ, WangL, LiuJ, WangH, KongDBiomaterials, 2018, 183: 306.

[7]

ZhangX, BaiS, ZangL, ChenX, YuanXChem. Res. Chinese Universities, 2022, 38: 1111.

[8]

AllenR A, WuW, YaoM, DuttaD, DuanX, BachmanT N, ChampionH C, StolzD B, RobertsonA M, KimK, IsenbergJ S, WangYBiomaterials, 2014, 35: 165.

[9]

JeffriesE M, AllenR A, GaoJActa Biomater., 2015, 18: 30.

[10]

WuZ, JinK, WangL, FanYMacromol. Biosci., 2021, 21: 2100022.

[11]

WangZ, ZhangM, LiuL, MithieuxS M, WeissA SJ. Biomed. Mater. Res. Part A, 2024, 112: 574.

[12]

ZhuT, GuH, ZhangH, WangH, XiaH, MoX, WuJActa Biomater., 2021, 119: 211.

[13]

BaiS, ZhangX, ZangL, RenL, YuanXSci. China Tech. Sci., 2022, 65: 2751.

[14]

ZangL, ChengQ, BaiS, WangK, YuanXJ. Biomater. Sci. Polym. Ed., 2023, 34: 1171.

[15]

GaoY, BaiS, ZhuK, YuanXJ. Biomater. Sci. Polym. Ed., 2024, 35: 1157.

[16]

WangY, AmeerG A, SheppardB J, LangerRNat. Biotechnol., 2002, 20: 602.

[17]

GodinhoB, GamaN, FerreiraAFront. Bioeng. Biotechnol., 2022, 10: 1033827.

[18]

YuL, ZengG, XuJ, HanM, WangZ, LiT, LongM, WangL, HuangW, WuYPolym. Rev., 2023, 63: 613.

[19]

SantS, IyerD, GaharwarA K, PatelA, KhademhosseiniAActa Biomater., 2013, 9: 5963.

[20]

WuZ, WangL, FanYJ. Biomed. Mater. Res. A, 2023, 111: 1513.

[21]

ChenW, XiaoW, LiuX, YuanP, ZhangS, WangY, WuWBioact. Mater., 2022, 11: 283

[22]

MasoumiN, LarsonB L, AnnabiN, KharazihaM, ZamanianB, ShaperoK S, GubberleyA T, Camci-UnalG, ManningK B, MayerJ EJr., KhademhosseiniAAdv. Healthcare Mater., 2014, 3: 929.

[23]

KhosraviR, BestC A, AllenR A, StowellC E T, OnwukaE, ZhuangJ J, LeeY U, YiT, BersiM R, ShinokaT, HumphreyJ D, WangY, BreuerC KAnn. Biomed. Eng., 2016, 44: 2402.

[24]

FerrariP F, AliakbarianB, BarisioneC, KahnC J F, Arab-TehranyE, PalomboDJ. Biomed. Mater. Res. A, 2023, 111: 1500.

[25]

LorioF, KhatibM E, WöltingerN, TurrianiM, GiacintoO D, MauroA, RussoV, BarboniB, BoccacciniA RJ. Biomed. Mater. Res. A, 2025, 113: e37794.

[26]

WangM, LeiD, LiuZ, ChenS, SunL, LvZ, HuangP, JiangZ, YouZJ. Biomater. Sci. Polym. Ed., 2017, 28: 1728.

[27]

WuY, WangL, GuoB, MaP XJ. Mater. Chem. B, 2014, 2: 3674.

[28]

HanW-H, WangQ-Y, KangY-Y, ShiL-R, LongY, ZhouX, HaoC-CNanoscale, 2023, 15: 15513.

[29]

NiuQ, GaoS, ZhuK, RenL, YuanXSci. China Tech. Sci., 2024, 67: 1160.

[30]

LiZ, HuW, ZhaoY, RenL, YuanXColloids Surf. B, 2018, 169: 151.

[31]

LiS, YangL, ZhaoZ, YangX, LvHActa Biomater., 2024, 176: 234.

[32]

OzdemirS, OztemurJ, SezginH, Yalcin-EnisIACS Biomater. Sci. Eng., 2024, 10: 960.

[33]

Yuan L., Gao Y., Wang Q., Zhu K., Ren L., Yuan X., Acta Biomater, 2025, https://doi.org/10.1016/j.actbio.2025.02.031.

[34]

ZhouS, LiuY, YuX, WangD, WangX, LiQACS Appl. Bio. Mater., 2024, 7: 6985.

[35]

BrashJ L, HorbettT A, LatourR A, TengvellPActa Biomater., 2019, 94: 11.

[36]

GorbetM, SperlingC, MaitzM FActa. Biomater., 2019, 94: 25.

[37]

L’HeureuxN, DusserreN, KonigG, VictorB, KeireP, WightT N, ChronosN A F, KylesA E, GregoryC R, HoytG, RobbinsR C, McAllisterT NNat. Med., 2006, 12: 361.

[38]

HiobM A, SheS, MuiznieksL D, WeissA SACS Biomater. Sci. Eng., 2017, 3: 712.

[39]

McClureM J, SimpsonD G, BowlinG LJ. Mech. Behav. Biomed., 2012, 10: 48.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/