Heteroatom Doping Modulates the Electronic Environment of Bi for Efficient Electroreduction of CO2 to Formic Acid

Sirui Zhao , Heng Zhou , Dengfeng Cao , Beibei Sheng , Fangren Qian , Chongjing Liu , Yongheng Chu , Rongyao Li , Li Song , Shuangming Chen

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 273 -280.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 273 -280. DOI: 10.1007/s40242-025-5019-7
Article

Heteroatom Doping Modulates the Electronic Environment of Bi for Efficient Electroreduction of CO2 to Formic Acid

Author information +
History +
PDF

Abstract

Electrocatalytic reduction reaction of carbon dioxide (CO2RR) to formic acid is widely considered an effective strategy for addressing the greenhouse effect and enhancing energy conversion efficiency. However, existing catalytic systems are severely hampered by insufficient activity and significant hydrogen evolution reaction (HER), which substantially compromises the selectivity and stability of CO2RR, necessitating the development of highly efficient and stable electrocatalysts. Herein, we present a heteroatomic modification strategy to synthesize B-doped Bi and N-doped Bi electrocatalysts, and systematically investigate the regulation mechanism of incorporated elements on the electronic environment using X-ray absorption fine structure (XAFS) spectroscopy and other characterization techniques. The optimized B-doped Bi catalyst demonstrates exceptional catalytic performance, achieving a remarkable Faradaic efficiency of 95% for formic acid production at a high current density of −190 mA/cm2 under alkaline conditions, while maintaining excellent stability for 20 h. Through comprehensive experimental characterization and theoretical calculations, we reveal that the B-doping-induced electron-rich structure significantly promotes CO2 molecule activation and facilitates the formation of the key intermediate *OCHO, thereby achieving high selectivity and stability in CO2RR. This work not only elucidates the crucial role of electronic environment in CO2 electrocatalytic conversion but also provides innovative insights into the rational design of high-performance electrocatalysts.

Keywords

Electrocatalytic carbon dioxide reduction reaction / Synchrotron radiation spectroscopy / Heteroatom doping / Electronic environment modulation / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Sirui Zhao, Heng Zhou, Dengfeng Cao, Beibei Sheng, Fangren Qian, Chongjing Liu, Yongheng Chu, Rongyao Li, Li Song, Shuangming Chen. Heteroatom Doping Modulates the Electronic Environment of Bi for Efficient Electroreduction of CO2 to Formic Acid. Chemical Research in Chinese Universities, 2025, 41(2): 273-280 DOI:10.1007/s40242-025-5019-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

QiuB, DuM, MaY, ZhuQ, XingM, ZhangJEnergy Environ. Sci., 2021, 14: 5260

[2]

AndreiV, ReuillardB, ReisnerENat. Mater., 2019, 19: 189

[3]

VermaS, HamasakiY, KimC, WilliamsR LACS Energy Lett., 2017, 3: 193

[4]

LiuS, XiaoJ, LuX F, WangJ, WangX, LouX WAngew. Chem. Int. Ed., 2019, 58: 8499

[5]

OzdenA, WangY, LiF, DinhC T, SargentE HJoule, 2021, 5: 706

[6]

WangX, WangZ, García de ArquerF P, DinhC T, OzdenA, LiY C, NamD H, LiJ, LiuY S, WicksJ, ChenZ, ChiM, ChenB, WangY, TamJ, HoweJ Y, ProppeA, TodorovicP, LiF, ZhuangT T, GabardoC M, KirmaniA R, McCallumC, HungS F, LumY, LuoM, MinY, XuA, O’BrienC P, StephenB, SunB, IpA H, RichterL J, KelleyS O, SintonD, SargentE HNat. Energy, 2020, 5: 478

[7]

LiL, OzdenA, GuoS, OzdenA, WangY, LiF, WangX, García de ArquerF P, NamD H, ProppeA H, ShiY, ChenZ, ChiM, TodorovicP, LiY C, WangY, LiF, SeifitokaldaniA, HungC F, GabardoC M, O’BrienC P, TanC S, LiJ, DinhC T, SintonD, SargentE HNat. Commun., 2021, 12: 1

[8]

LiZ, SunB, XiaoD, ChenY, ZhangY, ZhangS, KuangY, ZhongJ, SunX, LiuBAngew. Chem. Int. Ed., 2023, 62: 11

[9]

Wu X., Lu J., Zhu Z., Liu S., Wen H., Chin. Chem. Lett., 2024, 110151.

[10]

DingY, LiY, WangL, ZhangN, WangY, ZhangY, LuD, LiJ, WeiZACS Appl. Energy Mater., 2024, 7: 5418

[11]

YangZ Y, JinY X, FengZ B, LuoP, FengC R, ZhouY F, AnX W, HaoX G, AbudulaA, GuanG QChemsuschem, 2025, 18: 4

[12]

YaoD Z, TangC, VasileffA, ZhiX, JiaoY, QiaoS ZAngew. Chem. Int. Ed., 2021, 60: 18178

[13]

LaiW C, MaZ S, ZhangJ W, YuanY L, QiaoY, HuangH WAdv. Funct. Mater., 2022, 32: 16

[14]

ChenJ Y, WangLAdv. Mater., 2022, 34: 25

[15]

ShenH, ZhaoY, ZhangL, HeY, YangS, WangT, CaoY, GuoY, ZhangQ, ZhangHAdv. Energy Mater., 2022, 13: 1

[16]

WeiH L, TanA D, XiangZ P, ZhangJ, PiaoJ H, LiangZ X, WanK, FuZ YChemsuschem, 2022, 15: e202200752

[17]

NankyaR, XuY, ElgazzarA, ZhuP, WiT-U, QiuC, FengY, CheF, WangHAngew. Chem. Int. Ed., 2024, 63: 36

[18]

LiuX Y, ZhengH Y, SunQ M, HeJ T, YaoX H, SunC Y, ShanG G, ZhangM, ZhuC Y, SuZ M, WangX LAdv. Funct. Mater., 2024, 34: 2400928

[19]

LiuY W, LouZ X, WuX F, MeiB B, ChenJ C, ZhaoJ Y, LiJ, YuanH Y, ZhuM H, DaiS, SunC H, LiuP F, JiangZ, YangH GAdv. Mater., 2022, 34: 39

[20]

DengP, YangF, WangZ, ChenP, WangX, FanC, WangH, HuangZ, LingTAngew. Chem. Int. Ed., 2020, 59: 10807

[21]

HuY, LuD, ZhouW, WangX, LiYJ. Mater. Chem. A, 2023, 11: 1937

[22]

GuJ, HéroguelF, LuterbacherJ, HuXAngew. Chem., 2018, 130: 2993

[23]

ZhouJ H, YuanK, ZhouL, LanY Q, WangJ, ShaoL D, ZhangQAngew. Chem. Int. Ed., 2019, 58: 14197

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/