Co-doped Metal-Organic Framework as a Heterogeneous Catalyst for Ethylene Dimerization

Yao Ning , Bo Zhao , Wenpeng Min , Changlian Li , Pengxiao Liu , Yan Jia , Xinyuan Li , Ying Zhang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 601 -610.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 601 -610. DOI: 10.1007/s40242-025-5014-z
Article

Co-doped Metal-Organic Framework as a Heterogeneous Catalyst for Ethylene Dimerization

Author information +
History +
PDF

Abstract

The Co-MOF-5 catalyst was synthesized by substituting Zn2+ ions with Co2+ ions within the Zn4O metal clusters of MOF-5, achieved via direct agitation at room temperature. The removal of solvent molecules that exhibit additional coordination with Co2+ can be accomplished through high-temperature treatment, thereby enabling the catalyst to function effectively in ethylene dimerization reactions. At 10 atm (1 atm=101325 Pa) and 25 °C, with Et2AlCl as a cocatalyst, it showed significant activity and 1-C4 selectivity. At a Co/(Co+Zn) molar ratio of 20%, the oligomerization activity of ethylene was observed to be 5.38×105 g·mol−1·h−1. Additionally, the selectivity for C4 products was recorded at 97.11%, with 1-butene constituting 88.06% of the resultant product. Density functional theory (DFT) calculations corroborated that the ethylene oligomerization process catalyzed by Co-MOF-5 adheres to the Cossee-Arlman mechanism. Co-MOF-5 not only facilitates the dimerization process effectively but also directs the reaction pathway to preferentially yield 1-C4. Consequently, Co-MOF-5 presents significant potential for applications in industrial catalysis and organic synthesis, particularly in processes that necessitate highly selective products. By further optimizing and modifying the structure and reaction conditions of Co-MOF-5, it is anticipated that its catalytic performance can be enhanced, thereby advancing the development and application of ethylene dimerization reaction technologies.

Keywords

Metal-organic framework / Ethylene dimerization / Heterogeneous / Catalysis / Density functional theory (DFT) / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Yao Ning, Bo Zhao, Wenpeng Min, Changlian Li, Pengxiao Liu, Yan Jia, Xinyuan Li, Ying Zhang. Co-doped Metal-Organic Framework as a Heterogeneous Catalyst for Ethylene Dimerization. Chemical Research in Chinese Universities, 2025, 41(3): 601-610 DOI:10.1007/s40242-025-5014-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BreuilP A R, MagnaL, Olivier-BourbigouHCatal. Lett., 2015, 145: 173.

[2]

KissinY VKirk-OthmerKirk-Othmer Encyclopedia of Chemical Technology, 20151st ed.New YorkWiley

[3]

BenderMChemBioEngRev., 2014, 1: 136.

[4]

ChauN T K, KimS, LeeH-J, LeeM, ChungY MChem. Commun., 2024, 60: 168.

[5]

BelovG P, MatkovskyP EPet. Chem., 2010, 50: 283.

[6]

SydoraO LOrganometallics, 2019, 38: 997.

[7]

McGuinnessD SChem. Rev., 2011, 111: 2321.

[8]

PetitJ, MagnaLCoord. Chem. Rev., 2022, 450: 214227.

[9]

AleneziH, AlwiS R W, MananZ A, ZaidelD N AInternational Journal of Innovative Technology and Exploring Engineering, 2019, 8: 3969.

[10]

Al-Sa’dounAWAppl. Catal. A: Gen., 1993, 105: 1.

[11]

RajapakshaR, SamantaP, QuadrelliE A, CanivetJChem. Soc. Rev., 2023, 52: 8059.

[12]

Olivier-BourbigouH, BreuilP A R, MagnaL, MichelT, Espada PastorM F, DelcroixDChem. Rev., 2020, 120: 7919.

[13]

CanivetJ, AguadoS, SchuurmanY, FarrussengDJ. Am. Chem. Soc., 2013, 135: 4195.

[14]

JoubertJ, DelbecqF, SautetP, Le RouxE, TaoufikM, ThieuleuxC, BlancF, CopéretC, Thivolle-CazatJ, BassetJ MJ. Am. Chem. Soc., 2006, 128: 9157.

[15]

CorriuR J P, MehdiA, ReyéC, ThieuleuxC, FrenkelA, GibaudANew J. Chem., 2004, 28: 156.

[16]

YaghiO M, O’KeeffeM, OckwigN W, ChaeH K, EddaoudiM, KimJNature, 2003, 423: 705.

[17]

FurukawaH, CordovaK E, O’KeeffeM, YaghiO MScience, 2013, 341: 1230444.

[18]

YuanS, FengL, WangK, PangJ, BoschM, LollarC, SunY J, QinJ S, YangX Y, ZhangP, WangQ, ZouL F, ZhangY M, ZhangL L, FangY, LiJ L, ZhouHCAdv. Mater., 2018, 30: 1704303.

[19]

WangC, LiuD, LinWJ. Am. Chem. Soc., 2013, 135: 13222.

[20]

MetzgerE D, BrozekC K, ComitoR J, DincăMACS Cent. Sci., 2016, 2: 148.

[21]

MetzgerE D, ComitoR J, WuZ, ZhangG, DubeyR C, XuW, MillerJ T, DincaMACS Sustain. Chem. Eng., 2019, 7: 6654.

[22]

MadrahimovS T, GallagherJ R, ZhangG, MeinhartZ, GaribayS J, DelferroM, MillerJ T, FarhaO K, HuppJ T, NguyenS TACS Catal., 2015, 5: 6713.

[23]

ChenC, AlalouniM R, DongX, CaoZ, ChengQ, ZhengL, MengL, GuanC, LiuL, Abou-HamadE, WangJ, ShiZ, HuangK, CavalloL, HanYJ. Am. Chem. Soc., 2021, 143: 7144.

[24]

ChenW, ElumalaiP, MamloukH, Rentería-GómezÁ, VeerannaY, ShettyS, KumarD, Al-RawashdehM, GuptaS S, GutierrezO, ZhouH, MadrahimovSTAdv. Sci., 2024, 11: 2309540.

[25]

TranchemontagneD J, HuntJ R, YaghiO MTetrahedron, 2008, 64: 8553.

[26]

FrischM J, TrucksG W, SchlegelH B, ScuseriaG E, RobbM A, CheesemanJ R, ScalmaniG, BaroneV, PeterssonG A, NakatsujiH, LiX, CaricatoM, MarenichA V, BloinoJ, JaneskoB G, GompertsR, MennucciB, HratchianH P, OrtizJ V, IzmaylovA F, SonnenbergJ L, Williams-YoungD, DingF, LippariniF, EgidiF, GoingsJ, PengB, PetroneA, HendersonT, RanasingheD, ZakrzewskiV G, GaoJ, RegaN, ZhengG, LiangW, HadaM, EharaM, ToyotaK, FukudaR, HasegawaJ, IshidaM, NakajimaT, HondaY, KitaoO, NakaiH, VrevenT, ThrossellK, MontgomeryJ AJr., PeraltaJE, OgliaroF, BearparkM J, HeydJ J, BrothersE N, KudinK N, StaroverovV N, KeithT A, KobayashiR, NormandJ, RaghavachariK, RendellA P, BurantJ C, IyengarS S, TomasiJ, CossiM, MillamJ M, KleneM, AdamoC, CammiR, OchterskiJ W, MartinR L, MorokumaK, FarkasO, ForesmanJ B, FoxD JGaussian~09 Revision D.01, 2009

[27]

LeeC, YangW, ParrR GPhys. Rev. B, 1988, 37: 785.

[28]

BeckeA DJ. Chem. Phys., 1993, 98: 5648.

[29]

BeckeA DPhys. Rev. A, 1988, 38: 3098.

[30]

GrimmeSChem.: Eur. J., 2012, 18: 9955.

[31]

LiuL, LiuZ, TangS, ChengR, HeX, LiuBACS Catal., 2019, 9: 10519.

[32]

LuT, ChenQComput. Theor. Chem., 2021, 1200: 113249.

[33]

CaskeyS R, MatzgerAJInorg. Chem., 2008, 47: 7942.

[34]

ChenC, MengL, AlalouniM R, DongX, WuZ, ZuoS, ZhangHSmall, 2023, 19: 2301235.

[35]

LiH, ShiW, ZhaoK, LiH, BingY, ChengPInorg. Chem., 2012, 51: 9200.

[36]

BotasJ A, CallejaG, Sánchez-SánchezM, OrcajoM GLangmuir, 2010, 26: 5300.

[37]

RavelB, NewvilleMJ. Synchrot. Radiat., 2005, 12: 537.

[38]

ZabinskyS I, RehrJ J, AnkudinovA, AlbersR C, EllerM JPhys. Rev. B, 1995, 52: 2995.

[39]

HuY, ZhangY, HanY, ShengD, ShanD, LiuX, ChengAACS Appl. Nano Mater., 2019, 2: 136.

[40]

BernalesV, LeagueA B, LiZ, SchweitzerN M, PetersA W, CarlsonR K, HuppJ T, CramerC J, FarhaO K, GagliardiLJ. Phys. Chem. C, 2016, 120: 23576.

[41]

WangC, LiG, GuoHCatalysts, 2023, 13: 640.

[42]

AndreiR D, PopaM I, FajulaF, HuleaVJ. Catal., 2015, 323: 76.

[43]

LiuB, JieS, BuZ, LiB-GRSC Adv., 2014, 4: 62343.

[44]

LöbbertL, ChhedaS, ZhengJ, KhetrapalN, SchmidJ, ZhaoR, GaggioliC A, CamaioniD M, Bermejo-DevalR, GutiérrezO Y, LiuY, SiepmannJ I, NeurockM, GagliardiL, LercherJ AJ. Am. Chem. Soc., 2023, 145: 1407.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/