Directly Unveiling the Photothermal Corrosion of BiVO4via In-situ Transmission Electron Microscopy

Lindong Wang , Jingyi Sun , Lang Wang , Yu Li , Zhiyi Hu , Baolian Su

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 351 -357.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 351 -357. DOI: 10.1007/s40242-025-5007-y
Article

Directly Unveiling the Photothermal Corrosion of BiVO4via In-situ Transmission Electron Microscopy

Author information +
History +
PDF

Abstract

BiVO4 (BVO) is widely utilized in photothermal catalysis because of its favorable bandgap structure (2.4 eV), excellent photo response capabilities and high thermal stability. However, the mechanism of BVO photothermal corrosion still remains unclear due to the lack of visualized characterization on the degradation process in real time. Herein, we directly unveil the photothermal-induced microstructural evolution of BVO through in-situ heating (scanning) transmission electron microscopy [(S)TEM]. The results indicate that the electrons are the initiating condition (“switch”) for the photothermal corrosion of BVO, resulting in the precipitation of Bi and reduction of V5+ to V3+ in the substrate, while the thermal field facilitates the evaporation of Bi and the recrystallization of V2O3. This work sheds light on the mechanism of BVO photothermal corrosion in dynamics and provides significant insights into the photothermal synergistic effects.

Keywords

BiVO4 / Photothermal corrosion / In-situ transmission electron microscopy (TEM) / Photothermal catalysis / Structural evolution / Engineering / Materials Engineering

Cite this article

Download citation ▾
Lindong Wang, Jingyi Sun, Lang Wang, Yu Li, Zhiyi Hu, Baolian Su. Directly Unveiling the Photothermal Corrosion of BiVO4via In-situ Transmission Electron Microscopy. Chemical Research in Chinese Universities, 2025, 41(2): 351-357 DOI:10.1007/s40242-025-5007-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SongC, WangZ, YinZ, XiaoD, MaDChem. Catal., 2022, 2: 52

[2]

GhoussoubM, XiaM, DuchesneP N, SegalD, OzinGEnergy Environ. Sci., 2019, 12: 1122

[3]

LeeJ H, DoJ Y, ParkN K, SeoM W, RyuH J, HongJ P, KimY S, Kim SeogK, KangMPhotochem. Photobiol. Chem., 2018, 364: 219

[4]

HeH, XiongY, XiaoH, HanT, GuoY, LiJ, ChenQ, ZhangY, DuJ, KeGCatal. Sci. Technol., 2023, 13: 5776

[5]

LongC, KischHPhys. Chem. C, 2008, 112: 548

[6]

LotfiS, OuardiM E, AhsaineH A, AssaniACatal. Rev., 2024, 66: 214

[7]

HeB, JiaS, ZhaoM, WangY, ChenT, ZhaoS, LiZ, LinZ, ZhaoY, LiuXAdv. Mater., 2021, 33: 2004406

[8]

ChenS, HuangD, XuP, XueW, LeiL, ChengM, WangR, LiuX, DengRMater. Chem. A, 2020, 8: 2286

[9]

ChenD, XieZ, TongY, HuangYEnergy Fuels, 2022, 36: 9932

[10]

GaoR T, WangLAngew. Chem. Int. Ed., 2020, 59: 23094

[11]

YanY, LingY, WangG, LiuT, WangF, ZhaiT, TongY, LiYNano Lett., 2015, 15: 7051

[12]

TomaF M, CooperJ K, KunzelmannV, McDowellM T, YuJ, LarsonD M, BorysN J, AbelyanC, BeemanJ W, YuK M, YangJ, ChenL, ShanerM R, SpurgeonJ, HouleF A, PerssonK A, SharpI DNat. Commun., 2016, 7: 12012

[13]

LeeD K, ChoiK-SNat. Energy, 2017, 3: 53

[14]

LiJ, JohnsonG, ZhangS, SuDJoule, 2019, 3: 4

[15]

LiY, ZangL, JacobsD L, ZhaoJ, YueX, WangCNat. Commun., 2017, 8: 14462

[16]

AnQ, ZhangW, MaZ, GuoS, WangY, YaoY, DongL, XiaW, CaiR, WangHACS Appl. Mater. Interfaces, 2024, 16: 55490

[17]

GavhaneD S, SontakkeA D, Van HuisM AACS Appl. Nano Mater., 2023, 6: 7280

[18]

YangC, YinZ, LiW, CuiW, ZhouX, WangL, ZhiR, XuY, TaoZ, SangX, ChengY, Van TendelooG, HuZ, SuBAdv. Funct. Mater., 2024, 34: 2400569

[19]

LiW, RothmannM U, LiuA, WangZ, ZhangY, PascoeA R, LuJ, JiangL, ChenY, HuangF, PengY, BaoQ, EtheridgeJ, BachU, ChengYAdv. Energy Mater., 2017, 7: 1700946

[20]

Klein-KedemN, CahenD, HodesGAcc. Chem. Res., 2016, 49: 347

[21]

KulanchikovY O, VergelesP S, KonstantinovaK, IshteevA R, MuratovD S, YakimovE E, YakimovE B, SaraninD SarXiv. Preprint. arXiv., 2023, 2305: 06783

[22]

SongZ, XieZ-HMicron., 2018, 112: 69

[23]

LuoZ, OkiA, CarsonL, AdamsL, NeelgundG, SoboyejoN, RegisfordG, StewartM, HibbertK, BeharieG, Kelly-BrownC, TraisawatwongPChem. Phys. Lett., 2011, 513: 88

[24]

XuJ, BianZ, XinX, ChenA, WangHChem. Eng. J., 2018, 337: 684

[25]

SommersJ M, AldermanN P, ViasusC J, GambarottaSDalton Trans., 2017, 46: 6404

[26]

SomT, SimoA, FengerR, TroppenzG V, BansenR, PfänderN, EmmerlingF, RappichJ, BoeckT, RademannKChemPhysChem., 2012, 13: 2162

[27]

FittingK L, HottaY, SusakiT, HwangH Y, MullerD APhys. Rev. Lett., 2006, 97: 256803

[28]

HÿtchM J, SnoeckE, KilaasRUltramicroscopy, 1998, 74: 131

[29]

TaiC W, LereahYAppl. Phys. Lett., 2009, 94: 051908

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/