Synthesis of Small-sized Trisoctahedral Gold Nanoparticles with High Catalytic Activity for Methanol Electrooxidation

Li Kong , Mengjiao Hao , Longwei Li

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 903 -909.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 903 -909. DOI: 10.1007/s40242-025-5003-2
Article
research-article

Synthesis of Small-sized Trisoctahedral Gold Nanoparticles with High Catalytic Activity for Methanol Electrooxidation

Author information +
History +
PDF

Abstract

In this study, we successfully synthesized trisoctahedral gold nanoparticles (TOH-Au NPs) with an average size of 45 nm along the longest axis using a seeded growth method. To the best of our knowledge, this represents the smallest reported size for TOH-Au NPs with {331} facet to date. By modulating the seed amount, we achieved precise size control, increasing the average particle size from 45 nm to 80 nm, accompanied by a corresponding red shift in plasmon resonances. Structural characterization via projection angle measurements confirmed that the synthesized TOH-Au NPs are enclosed by high-index {331} facets. These facets exhibit a high density of low-coordination sites, including step and kink atoms, which contribute to their exceptional electrocatalytic performance. Notably, the 45 nm TOH-Au NPs demonstrated the highest electrocatalytic activity, with an electrochemically active surface area (ECSA) of 1.239 m2/g, a mass-specific activity of 2.297 A/g, and an area-specific activity of 0.185 mA/cm2. This work not only establishes a robust method for the controlled synthesis of Au NPs but also highlights their potential as highly efficient catalysts for electrochemical applications.

Keywords

Gold / Nanoparticle / Seeded growth / High-index facet / Electrocatalysis

Cite this article

Download citation ▾
Li Kong, Mengjiao Hao, Longwei Li. Synthesis of Small-sized Trisoctahedral Gold Nanoparticles with High Catalytic Activity for Methanol Electrooxidation. Chemical Research in Chinese Universities, 2025, 41(4): 903-909 DOI:10.1007/s40242-025-5003-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FanJ, ChengY, SunMChem. Rec., 2020, 201474

[2]

FrickensteinA, MeansN, HeY X, WhiteheadL, HarcourtT, MalikZ, ShethV, LongacreL, TaffeH, WangL, McspaddenI, BaroodyC, YangW, ZhaoY D, WilhelmSACS Appl. Nano Mater., 2024, 723250

[3]

AlkilanyA M, LohseS E, MurphyC JAcc. Chem. Res., 2013, 46650

[4]

OrendorffC J, SauT K, MurphyC JSmall, 2006, 2636

[5]

NehlC L, HafnerJ HJ. Mater. Chem., 2008, 182415

[6]

LiY, XiaYChem. Res. Chinese Universities, 2024, 40311

[7]

ZhuT, YuanX, MaoG, WeiL, XiaoLChem. Res. Chinese Universities, 2024, 40320

[8]

OmarR, NaciriA E, JradiS, BattieY, ToufailyJ, MortadaH, AkilSJ. Mat. Chem. C, 2017, 510813

[9]

BhattaraiS R, DerryP J, AzizK, SinghP K, KhooA M, ChadhaA S, KrishnanSNanoscale, 2017, 95085

[10]

LoubatA, LacroixL M, RobertA, Imperor-ClercM, PoteauR, MaronL, ViauGJ. Phys. Chem. C, 2015, 1194422

[11]

QuanZ, WangY, FangJAcc. Chem. Res, 2013, 46191

[12]

XueF, GuoX, MinB, SiY, HuangH, ShiJ, LiuMACS Catal., 2021, 118239

[13]

ZhangQ, WangHACS Catal., 2014, 44027

[14]

HongJ W, LeeS U, LeeY W, HanS WJ. Am. Chem. Soc., 2012, 1344565

[15]

LiM, ZhouW P, MarinkovicN S, SasakiK, AdzicR RElectrochim. Acta, 2013, 104454

[16]

ZhouY, ZouY, JiangJMaterials Letters, 2023, 331133432

[17]

LaiY, DongL, LiuR, LuS, HeZ, ShanW, GengF, CaiY, LiuJChinese Chemical Letters, 2020, 312437

[18]

CaoW, JiangL, HuJ, WangA, LiX, LuYACS Appl. Mater. Interface, 2018, 101297

[19]

NehraK, PandianS K, ByramC, MoramS S B, SomaV RJ. Phys. Chem. C, 2019, 12316210

[20]

SongY, MiaoT, ZhangP, BiC, XiaH, WangD, TaoXNanoscale, 2015, 78405

[21]

WuC, HeH, SongY, BiC, XingL, DuW, LiS, XiaHNanoscale, 2020, 1216934

[22]

ShenC, HuiC, YangT, XiaoC, TianJ, BaoL, ChenS, DingH, GaoHChem. Mater, 2008, 206939

[23]

Sánchez-IglesiasA, Carbó-ArgibayE, GlariaA, Rodríguez-GonzálezB, Pérez-JusteJ, Pastoriza-SantosI, Liz-MarzánL MChem. Eur. J, 2010, 165558

[24]

ChiuC Y, HuangM HAngew. Chem. Int. Ed., 2013, 12512941

[25]

TianN, ZhouZ Y, SunS GJ. Phys. Chem. C, 2008, 11219801

[26]

DingY, GaoY, WangZ L, TianN, ZhouZ Y, SunS GAppl. Phys. Lett., 2007, 91121901

[27]

TangY, ChengWLangmuir, 2013, 293125

[28]

HamelinAJ. ElectroanalChem., 1996, 4071

[29]

WangZ, LiuP, HanJ, ChengC, NingS, HirataA, FujitaT, ChenMNat. Commun., 2017, 81066

[30]

WangJ, GongJ, XiongY, YangJ, GaoY, LiuY, LuX, TangZChem. Commun., 2011, 476894

[31]

SongY, XiangC, BiC, WuC, HeH, DuW, HuangL, TianH, XiaHNanoscale, 2018, 1022302

[32]

ChenJ, LiuB, ChengH, LiM, SunX, DuanX, HuJLangmuir, 2024, 4011959

[33]

XiaH, RanY, LiH, TaoX, WangDJ. Mater. Chem. A, 2013, 14678

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/