Interface Optimization Between Porous Transport Layer and Catalyst Layer in Proton Exchange Membrane Water Electrolyzers

Yanhua Zhu , Yun Liu , Fan Zhang , Zihao Fan , Zhenye Kang , Xiaohan Wan , Guanxiong Wang , Jing Li , Chao Tian , Hui Lei , Weina Wang , Xinlong Tian

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 484 -494.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 484 -494. DOI: 10.1007/s40242-025-5001-4
Article

Interface Optimization Between Porous Transport Layer and Catalyst Layer in Proton Exchange Membrane Water Electrolyzers

Author information +
History +
PDF

Abstract

The porous transport layer (PTL) and the catalyst layer are two critical components in the proton exchange membrane water electrolyzer (PEMWE). The gas/liquid two-phase transport and electron/heat transfer between the two layers have a significant impact on the performance of the whole device. Catalyst layers and PTLs prepared by different methods or structures have unique effects. The coordination between the PTL and catalyst layer can greatly impact the catalyst and PEMWE performance, which is induced by the interface between the two. However, this coupled effect has not been well studied and the optimized interface mechanism is still unclear. In this work, three types of PTLs, including carbon paper, Ti felt and sintered Ti particles, were adopted, and their interfacial relationships between catalyst layers were investigated. We found that the interface between PTL and catalyst layer can be regulated by PTL structure, surface property, and catalyst layer thickness. The surface coating improves the electron transport at the interface and in the PTL itself, thereby increasing the local current density and weakening the influence of Schottky basis and pinch-off effects, and thus improving the PEMWE performance. The catalyst layer thickness could affect the in-plane electrical conductivity, which adjusts the active site distribution and enhances the local current density uniformity. This work reveals the coupled effects of PTL and catalyst layer on the interface and PEMWE performance, which provides the optimization strategy for the interface in PEMWE.

Keywords

Porous transport layer / Catalyst layer / Proton exchange membrane water electronlyzer (PEMWE) / Interface / Schottky effect / Engineering / Materials Engineering / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Yanhua Zhu, Yun Liu, Fan Zhang, Zihao Fan, Zhenye Kang, Xiaohan Wan, Guanxiong Wang, Jing Li, Chao Tian, Hui Lei, Weina Wang, Xinlong Tian. Interface Optimization Between Porous Transport Layer and Catalyst Layer in Proton Exchange Membrane Water Electrolyzers. Chemical Research in Chinese Universities, 2025, 41(3): 484-494 DOI:10.1007/s40242-025-5001-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GuoJ, ZhengY, HuZ, ZhengC, MaoJ, DuK, JaroniecM, QiaoS-Z, LingTNature Energy, 2023, 8: 264.

[2]

ZhengX-L, YangY-J, LiuY-H, DengP-L, LiJ, LiuW-F, RaoP, JiaC-M, HuangW, DuY-L, ShenY-J, TianX-LRare Metals, 2022, 41: 2153.

[3]

GeS, XieR, HuangB, ZhangZ, LiuH, KangX, HuS, LiS, LuoY, YuQ, WangJ, ChaiG, GuanL, ChengH-M, LiuBEnergy & Environmental Science, 2023, 16: 3734.

[4]

WangW, XiongF, ZhuS, ChenJ, XieJ, AnQeScience, 2022, 2: 278.

[5]

YangL, ShiL, ChenH, LiangX, TianB, ZhangK, ZouY, ZouXAdvanced Materials, 2023, 35: 2208539.

[6]

WangC, YangF, FengLNanoscale Horizons, 2023, 8: 1174.

[7]

LiM, HaoY, YangZ, YunJ, LiangXChem. Res. Chinese Universities, 2023, 39: 647.

[8]

WangY, ZhangM, KangZ, ShiL, ShenY, TianB, ZouY, ChenH, ZouXNature Communications, 2023, 14: 5119.

[9]

HuangR-Q, LiaoW-P, YanM-X, LiuS, LiY-M, KangX-WJournal of Electrochemistry, 2023, 29: 3

[10]

PivovarBNature Catalysis, 2019, 2: 562.

[11]

GaoX, ChenJ, YuY, WangF, WuX, WangX, MaoW, LiJ, HuangW, ChenQ, LiR, YouC, WangS, TianX, KangZChemical Engineering Journal, 2023, 474: 145568.

[12]

YuM, BudiyantoE, TüysüzHAngewandte Chemie International Edition, 2022, 61: e202103824.

[13]

SunJ-P, ZhaoZ, LiJ, LiZ-Z, MengX-CRare Metals, 2023, 42: 751.

[14]

LeeJ K, AndersonG, TrickerA W, BabbeF, MadanA, CullenD A, Arregui-MenaJ D, DanilovicN, MukundanR, WeberA Z, PengXNature Communications, 2023, 14: 4592.

[15]

KangZ, ChenY, WangH, AliaS M, PivovarB S, BenderGACS Applied Materials & Interfaces, 2022, 14: 2335.

[16]

Lickert T., Fischer S., Young J. L., Klose S., Franzetti I., Hahn D., Kang Z., Shviro M., Scheepers F., Carmo M., Smolinka T., Bender G., Metz S., Applied Energy, 2023, 352.

[17]

ChenH-J, TangM-H, ChenS-LJournal of Electrochemistry, 2023, 29: 2

[18]

YangC, WangH-B, LiangP, WuB-F, ZhaoL, LengP-S, LvL, WanH-Z, WangHRare Metals, 2023, 42: 1865.

[19]

ZhaoG, MaW, WangX, XingY, HaoS, XuXAdvanced Powder Materials, 2022, 1: 100008.

[20]

Parra-RestrepoJ, BlignyR, DilletJ, DidierjeanS, StemmelenD, MoyneC, DegiovanniA, MaranzanaGInternational Journal of Hydrogen Energy, 2020, 45: 8094.

[21]

KangZ, WangM, YangY, WangH, LiuY, MoJ, LiJ, DengP, JiaC, TianXInternational Journal of Hydrogen Energy, 2022, 47: 5807.

[22]

KangZ, YangG, MoJ, LiY, YuS, CullenD A, RettererS T, ToopsT J, BenderG, PivovarB S, GreenJ B, ZhangF-YNano Energy, 2018, 47: 434.

[23]

KangZ, WangH, LiuY, MoJ, WangM, LiJ, TianXApplied Energy, 2022, 317: 119213.

[24]

WangW, DingL, XieZ, YuS, CanfieldB, BenderG, WrubelJ A, PivovarB S, ZhangF YSmall, 2023, 19: e2207809.

[25]

YoungJ L, KangZ, GanciF, MadachyS, BenderGElectrochemistry Communications, 2021, 124: 106941.

[26]

KangZ, MoJ, YangG, RettererS T, CullenD A, ToopsT J, GreenJ BJr., MenchM M, ZhangF-YEnergy & Environmental Science, 2017, 10: 166.

[27]

YuS, LiK, WangW, XieZ, DingL, KangZ, WrubelJ, MaZ, BenderG, YuH, BaxterJ, CullenD A, KeaneA, AyersK, CapuanoC B, ZhangF-YSmall, 2022, 18: 2107745.

[28]

LettenmeierP, KolbS, SataN, FallischA, ZielkeL, ThieleS, GagoA S, FriedrichK AEnergy & Environmental Science, 2017, 10: 2521.

[29]

YuanX-Z, ShaiganN, SongC, AujlaM, NeburchilovV, KwanJ T H, WilkinsonD P, BazylakA, FatihKSustainable Energy & Fuels, 2022, 6: 1824.

[30]

WuQ, WangY, ZhangK, XieZ, SunK, AnW, LiangX, ZouXMaterials Chemistry Frontiers, 2023, 7: 1025.

[31]

ZhangK, LiangX, WangL, SunK, WangY, XieZ, WuQ, BaiX, HamdyM S, ChenH, ZouXNano Research Energy, 2022, 1: 9120032.

[32]

HwangC M, IshidaM, ItoH, MaedaT, NakanoA, HasegawaY, YokoiN, KatoA, YoshidaTInternational Journal of Hydrogen Energy, 2011, 36: 1740.

[33]

GuoH, ChenL, IsmailS A, JiangL, GuoS, GuJ, ZhangX, LiY, ZhuY, ZhangZ, HanDMaterials, 2022, 15: 8800.

[34]

JiaS, ZhaoP, LiuQ, ChenY, ChengP, YangY, ZhangZChem. Res. Chinese Universities, 2022, 38: 461.

[35]

OhH, ParkJ, MinK, LeeE, JyoungJ-YApplied Energy, 2015, 149: 186.

[36]

SchulerT, CicconeJ M, KrentscherB, MaroneF, PeterC, SchmidtT J, BuchiF NAdvanced Energy Materials, 2020, 10: 1903216.

[37]

SchulerT, SchmidtT J, BüchiF NJournal of The Electrochemical Society, 2019, 166: F555.

[38]

GrigorievS, MilletP, VolobuevS, FateevVInternational Journal of Hydrogen Energy, 2009, 34: 4968.

[39]

ItoH, MaedaT, NakanoA, KatoA, YoshidaTElectrochimica Acta, 2013, 100: 242.

[40]

SuermannM, TakanohashiK, LamibracA, SchmidtT J, BüchiF NJournal of The Electrochemical Society, 2017, 164: F973.

[41]

ZielkeL, FallischA, PaustN, ZengerleR, ThieleSRSC Advances, 2014, 4: 58888.

[42]

BystronT, VeselyM, PaidarM, PapakonstantinouG, SundmacherK, BensmannB, Hanke-RauschenbachR, BouzekKJournal of Applied Electrochemistry, 2018, 48: 713.

[43]

LeeJ K, BabbeF, WangG, TrickerA W, MukundanR, WeberA Z, PengXJoule, 2024, 8: 2357.

[44]

LiuC, ShviroM, BenderG, GagoA S, MorawietzT, DzaraM J, BiswasI, GazdzickiP, KangZ, ZaccarineS F, PylypenkoS, FriedrichK A, CarmoM, LehnertWJournal of The Electrochemical Society, 2023, 170: 034508.

[45]

LiuC, CarmoM, BenderG, EverwandA, LickertT, YoungJ L, SmolinkaT, StoltenD, LehnertWElectrochemistry Communications, 2018, 97: 96.

[46]

DoanT L, LeeH E, KimM, ChoW C, ChoH S, KimTJournal of Power Sources, 2022, 533: 231370.

[47]

FanZ, YuH, JiangG, YaoD, SunS, ChiJ, QinB, ShaoZInternational Journal of Hydrogen Energy, 2022, 47: 18963.

[48]

HeY, FengS, ChenH, LiuY, ShiX, RaoP, LiJ, WuX, HuangS, LiK, WangH, TianX, KangZFuel, 2025, 379: 133028.

[49]

SchulerT, CicconeJ M, KrentscherB, MaroneF, PeterC, SchmidtT J, BiichiF NAdvanced Energy Materials, 2019, 10: 1903216.

[50]

DooG, ParkJ, ParkJ, HeoJ, JungJ, LeeD W, BaeH, HyunJ, OhE, KwenJ, KimK M, KimH-TACS Energy Letters, 2023, 8: 2214.

[51]

KangZ, SchulerT, ChenY, WangM, ZhangF-Y, BenderGElectrochimica Acta, 2022, 429: 140942.

[52]

ScheuermannA G, LawrenceJ P, KempK W, ItoT, WalshA, ChidseyC E D, HurleyP K, McIntyreP CNature Materials, 2015, 15: 99.

[53]

LiuJ, LiuH, YangY, TaoY, ZhaoL, LiS, FangX, LinZ, WangH, TaoH B, ZhengNACS Central Science, 2024, 10: 852

[54]

DooG, BaeH, ParkJ, HyunJ, KimI, LeeD W, OhE, KimH-TACS Nano, 2024, 18: 23331.

[55]

LiuC, ShviroM, GagoA S, ZaccarineS F, BenderG, GazdzickiP, MorawietzT, BiswasI, RasinskiM, EverwandA, SchierholzR, PfeilstickerJ, MüllerM, LopesP P, EichelR-A, PivovarB, PylypenkoS, FriedrichK A, LehnertW, CarmoMAdvanced Energy Materials, 2021, 11: 2002926.

[56]

KangZ, AliaS M, CarmoM, BenderGJournal of Power Sources, 2021, 481: 229012.

[57]

YangG, YuS, KangZ, LiY, BenderG, PivovarB S, GreenJ B, CullenD A, ZhangF YAdvanced Energy Materials, 2020, 10: 1903871.

[58]

LiuC, ShviroM, GagoA S, ZaccarineS F, BenderG, GazdzickiP, MorawietzT, BiswasI, RasinskiM, EverwandA, SchierholzR, PfeilstickerJ, MillerM, LopesP P, EichelR A, PivovarB, PylypenkoS, FriedrichK A, LehnertW, CarmoMAdvanced Energy Materials, 2021, 11: 200292

[59]

LiuC, ShviroM, BenderG, GagoA S, MorawietzT, DzaraM J, BiswasI, GazdzickiP, KangZ, ZaccarineS F, PylypenkoS, FriedrichK A, CarmoM, LehnertWJournal of The Electrochemical Society, 2023, 170: 034508.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

275

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/