Detection of Small Molecular Metabolites by Ambient Mass Spectrometry for Clinical Applications

Jiali Ye , Yiyan Yin , Jin Ouyang , Na Na

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 181 -195.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 181 -195. DOI: 10.1007/s40242-025-4258-y
Review

Detection of Small Molecular Metabolites by Ambient Mass Spectrometry for Clinical Applications

Author information +
History +
PDF

Abstract

Detection of small molecular metabolites in the body can reflect the overall health status of the human body, being essential for understanding metabolism and diagnosing diseases. For the detection and monitoring of small molecular metabolites in complicated biological systems, the sensitive detections of trace metabolites and their pathways have been pursued by different strategies. Mass spectrometry provides high sensitivity and specificity for metabolic studies, while commercial techniques normally require sample pretreatments to limit the multiple examining requirements. Fortunately, ambient mass spectrometry (AMS) can meet rapid clinical examinations due to its rapid and direct detection of biological molecules without or with fewer sample pretreatments. By virtue of AMS, the real-time and online monitoring of small molecular metabolites can be achieved for examining metabolism mechanisms and facilitating targeted interventions. This review summarizes the application of AMS in the monitoring of small molecular metabolites, including glucose, lipids, amino acids, nucleotides, and aldehydes, as well as examinations of reaction mechanisms in clinical applications. This would provide insights on constructing powerful diagnostic tools for clinical applications.

Keywords

Ambient mass spectrometry / Small molecular metabolite / Metabolism / Disease / Chemical Sciences / Analytical Chemistry / Biological Sciences / Biochemistry and Cell Biology

Cite this article

Download citation ▾
Jiali Ye, Yiyan Yin, Jin Ouyang, Na Na. Detection of Small Molecular Metabolites by Ambient Mass Spectrometry for Clinical Applications. Chemical Research in Chinese Universities, 2025, 41(2): 181-195 DOI:10.1007/s40242-025-4258-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NicholsonJ K, LindonJ CNature, 2008, 455: 1054.

[2]

WishartD S, FeunangY D, MarcuA, GuoA C, LiangK, Vázquez-FresnoR, SajedT, JohnsonD, LiC, KaruN, SayeedaZ, LoE, AssempourN, BerjanskiiM, SinghalS, ArndtD, LiangY, BadranH, GrantJ, Serra-CayuelaA, LiuY, MandalR, NeveuV, PonA, KnoxC, WilsonM, ManachC, ScalbertANucleic Acids Res., 2018, 46: D608.

[3]

PhanL M, YeungS-C J, LeeM-HCancer Biol. Med., 2014, 11: 1

[4]

Vander HeidenM G, CantleyL C, ThompsonC BScience, 2009, 324: 1029.

[5]

ZhengE, KhariwalaS SThe Laryngoscope, 2019, 129: 537.

[6]

ZhangY, ZhouB, LiQ, JinM, BaiYChem. Res. Chin. Universities, 2024, 40: 237.

[7]

GowdaG A N, DjukovicDRafteryDMass Spectrometry in Metabolomics: Methods and Protocols, 2014New YorkSpringer3.

[8]

CooksR G, OuyangZ, TakatsZ, WisemanJ MScience, 2006, 311: 1566.

[9]

ClendinenC S, MongeM E, FernándezF MAnalyst, 2017, 142: 3101.

[10]

KuoT-H, DutkiewiczE P, PeiJ, HsuC-CAnal. Chem., 2020, 92: 2353.

[11]

WanE C H, YuJ ZEnviron. Sci. Technol., 2007, 41: 2459.

[12]

RufA, KanawatiB, Schmitt-KopplinPRapid Commun. Mass Spectrom., 2022, 36: e9283.

[13]

Chen H., Cotte-Rodríguez I., Cooks R. G., Chem. Commun., 2006, 597.

[14]

ZhangY, ChenHInt. J. Mass Spectrom., 2010, 289: 98.

[15]

BiL, HabibA, ChenL, XuT, WenLTalanta, 2021, 222: 121673.

[16]

WangY, SunM, QiaoJ, OuyangJ, NaNChem. Sci., 2018, 9: 594.

[17]

AhmadiM, NasriZ, von WoedtkeT, WendeKACS Omega, 2022, 7: 31983.

[18]

CrabtreeH GBiochem. J., 1929, 23: 536.

[19]

DakuboG DMitochondrial Genetics and Cancer, 2010Berlin, HeidelbergSpringer39

[20]

BanerjeeS, ZareR N, TibshiraniR J, KunderC A, NolleyR, FanR, BrooksJ D, SonnG AProc. Natl. Acad. Sci., 2017, 114: 3334.

[21]

ZekovićM, BumbaširevićU, ŽivkovićM, PejčićTInt. J. Mol. Sci., 2023, 24: 1391.

[22]

LiL, WangL, FengZ, HuZ, WangG, YuanX, WangH, HuDQuant. Imaging Med. Surg., 2013, 3: 10012

[23]

YoshiiY, FurukawaT, WakiA, OkuyamaH, InoueM, ItohM, ZhangM-R, WakizakaH, SogawaC, KiyonoY, YoshiiH, FujibayashiY, SagaTBiomaterials, 2015, 51: 278.

[24]

XieP, ZhangJ, WuP, WuY, HongY, WangJ, CaiZChin. Chem. Lett., 2023, 34: 107349.

[25]

LiuX, FlindersC, MumenthalerS M, HummonA BJ. Am. Soc. Mass Spectrom., 2018, 29: 516.

[26]

FlintL E, HammG, ReadyJ D, LingS, DuckettC J, CrossN A, ColeL M, SmithD P, GoodwinR J A, ClenchM RAnal. Chem., 2020, 92: 12538.

[27]

LuoZ, HeJ, ChenY, HeJ, GongT, TangF, WangX, ZhangR, HuangL, ZhangL, LvH, MaS, FuZ, ChenX, YuS, AblizZAnal. Chem., 2013, 85: 2977.

[28]

LvY, LiT, GuoC, SunC, TangF, HuangL, LuoZ, LiX, ZhangR, ZangQ, HeJ, AblizZChin. Chem. Lett., 2019, 30: 461.

[29]

HuangJ, GaoS, WangK, ZhangJ, PangX, ShiJ, HeJChin. Chem. Lett., 2023, 34: 107865.

[30]

HuoM, WangZ, FuW, TianL, LiW, ZhouZ, ChenY, WeiJ, AblizZJ. Proteome Res., 2021, 20: 3567.

[31]

ButlerL M, PeroneY, DehairsJ, LupienL E, de LaatV, TalebiA, LodaM, KinlawW B, SwinnenJ VAdv. Drug Deliv. Rev., 2020, 159: 245.

[32]

StorckE M, ÖzbalciC, EggertU SAnnu. Rev. Biochem., 2018, 87: 839.

[33]

YuW, LeiQ, YangL, QinG, LiuS, WangD, PingY, ZhangYJ. Hematol. Oncol., 2021, 14: 187.

[34]

LiL, HanJ, WangZ, LiuJ, WeiJ, XiongS, ZhaoZInt. J. Mol. Sci., 2014, 15: 10492.

[35]

TakátsZ, WisemanJ M, GologanB, CooksR GScience, 2004, 306: 471.

[36]

MaX, XiaYAngew. Chem. Int. Ed., 2014, 53: 2592.

[37]

AdamW, PetersK, PetersE M, StegmannV RJ. Am. Chem. Soc., 2000, 122: 2958.

[38]

ZhaoY, ZhaoH, ZhaoX, JiaJ, MaQ, ZhangS, ZhangX, ChibaH, HuiS-P, MaXAnal. Chem., 2017, 89: 10270.

[39]

CaoW, MaX, LiZ, ZhouX, OuyangZAnal. Chem., 2018, 90: 10286.

[40]

FengY, ChenB, YuQ, LiLAnal. Chem., 2019, 91: 1791.

[41]

ZhangJ, XuD, DengZ, TanX, GuoD, QiaoY, LiY, HouX, WangS, ZhangJTalanta, 2024, 267: 125267.

[42]

MüllerP, FruitCChem. Rev., 2003, 103: 2905.

[43]

YangT, TangS, KuoS-T, FreitasD, EdwardsM, WangH, SunY, YanXAngew. Chem. Int. Ed. Engl., 2022, 61: e202207098.

[44]

HirtzelE, EdwardsM, FreitasD, LiuZ, WangF, YanXJ. Am. Soc. Mass Spectrom., 2023, 34: 1998.

[45]

WanQ, XiaoY, FengG, DongX, NieW, GaoM, MengQ, ChenSChin. Chem. Lett., 2024, 35: 108775.

[46]

ItoJ, NakagawaK, KatoS, HirokawaT, KuwaharaS, NagaiT, MiyazawaTAnal. Bioanal. Chem., 2016, 408: 7785.

[47]

UnsihuayD, SuP, HuH, QiuJ, KuangS, LiY, SunX, DeyS K, LaskinJAngew. Chem. Int. Ed. Engl., 2021, 60: 7559.

[48]

ClaesB S R, BowmanA P, PoadB L J, YoungR S E, HeerenR M A, BlanksbyS J, EllisS RAnal. Chem., 2021, 93: 9826.

[49]

SantoroA L, DrummondR D, SilvaI T, FerreiraS S, JulianoL, VendraminiP H, LemosM B D C, EberlinM N, AndradeV PCancer Res., 2020, 80: 1246.

[50]

SwinerD J, KulykD S, OsaeH, DurisekG RIII, Badu-TawiahA KAnal. Chem., 2022, 94: 2358.

[51]

QiK, WuL, LiuC, PanYMetabolites, 2021, 11: 780.

[52]

MaoX, HeJ, LiT, LuZ, SunJ, MengY, AblizZ, ChenJSci. Rep., 2016, 6: 21043.

[53]

QiK, LvY, RenY, WangX, WuL, WangJ, ZhangX, HeY, ZhangC, LiuC, PanYTalanta, 2021, 231: 122380.

[54]

BergmanH-M, LindforsL, PalmF, KihlbergJ, LanekoffIAnal. Bioanal. Chem., 2019, 411: 2809.

[55]

MargulisK, ZhouZ, FangQ, SieversR E, LeeR J, ZareR NAnal. Chem., 2018, 90: 12198.

[56]

YinY, GeX, OuyangJ, NaNNat. Commun., 2024, 15: 2954.

[57]

CaoM, XingX, ShenX, OuyangJ, NaNChem. Res. Chin. Universities, 2024, 40: 202.

[58]

SivanandS, HeidenM G VCancer Cell, 2020, 37: 147.

[59]

LieuE L, NguyenT, RhyneS, KimJExp. Mol. Med., 2020, 52: 15.

[60]

LuH, YeJ, WeiY, ZhangH, ChinginK, FrankevichV, ChenHChin. Chem. Lett., 2025, 36: 110077.

[61]

BouzaM, FoestD, BrandtS, García-ReyesJ F, FranzkeJAnal. Chem., 2024, 96: 5289.

[62]

MacielL Í L L, Rodrigues Feitosa RamalhoR, Izidoro RibeiroR, Cunha Xavier PintoM, PereiraI, VazB GJ. Am. Soc. Mass Spectrom., 2021, 32: 2513.

[63]

XuN, ZhuZ-Q, YangS-P, WangJ, GuH-W, ZhouZ, ChenH-WChin. J. Anal. Chem., 2013, 41: 523.

[64]

LuH, LiY, ZhangH, ChinginK, WeiY, HuangK, FengSTalanta, 2021, 233: 122544.

[65]

SongX, YangX, NarayananR, ShankarV, EthirajS, WangX, DuanN, NiY-H, HuQ, ZareR NProc. Natl. Acad. Sci., 2020, 117: 16167.

[66]

SongX, ChenH, ZareR NAnal. Chem., 2018, 90: 1287

[67]

ZhuJ, ThompsonC BNat. Rev. Mol. Cell Biol., 2019, 20: 436.

[68]

AltmanB J, StineZ E, DangC VNat. Rev. Cancer, 2016, 16: 619.

[69]

ChenX, YuDMetabolomics Off. J. Metabolomic Soc., 2019, 15: 22

[70]

PavlovaN N, ThompsonC BCell Metab., 2016, 23: 27.

[71]

KangW, ZhangY, ZhouY, FengXCrit. Rev. Anal. Chem., 2022, 52: 1624.

[72]

WernerAJ. Chromatogr. B. Biomed. Sci. App., 1993, 618: 3.

[73]

LiA, WangH, OuyangZ, CooksR GChem. Commun., 2011, 47: 2811.

[74]

BeerB, ChasinM, ClodyD E, VogelJ R, HorovitzZ PScience, 1972, 176: 428.

[75]

LiX, LiaoX, LiuY-MTalanta, 2020, 217: 121106.

[76]

HardieD GGenes Dev., 2011, 25: 1895.

[77]

MiyamotoS, HsuC-C, HammG, DarshiM, Diamond-StanicM, DeclèvesA-E, SlaterL, PennathurS, StauberJ, DorresteinP C, SharmaKEBioMedicine, 2016, 7: 121.

[78]

Marín-AguilarF, PavillardL E, GiampieriF, BullónP, CorderoM DInt. J. Mol. Sci., 2017, 18: 288.

[79]

DuF, ZhuX-H, ZhangY, FriedmanM, ZhangN, UğurbilK, ChenWProc. Natl. Acad. Sci., 2008, 105: 6409.

[80]

YacoubiM E, LedentC, MénardJ-F, ParmentierM, CostentinJ, VaugeoisJ-MBr. J. Pharmacol., 2000, 129: 1465.

[81]

StockwellJ, JakovaE, CayabyabF SMolecules, 2017, 22: 676.

[82]

YinX, YangJ, ZhangM, WangX, XuW, PriceC-A H, HuangL, LiuW, SuH, WangW, ChenH, HouG, WalkerM, ZhouY, ShenZ, LiuJ, QianK, DiWACS Nano, 2022, 16: 2852.

[83]

McCreeryM Q, BalmainAAnnu. Rev. Cancer Biol., 2017, 1: 295.

[84]

UchidaK, KanematsuM, SakaiK, MatsudaT, HattoriN, MizunoY, SuzukiD, MiyataT, NoguchiN, NikiE, OsawaTProc. Natl. Acad. Sci., 1998, 95: 4882.

[85]

CaoL, LiuX, LinE-J D, WangC, ChoiE Y, RibanV, LinB, DuringM JCell, 2010, 142: 52.

[86]

LiZ, LiY, ZhanL, MengL, HuangX, WangT, LiY, NieZAnal. Chem., 2021, 93: 9158.

[87]

PeñaJ, Fernández LaespadaM E, García PintoC, Pérez PavónJ L, Moreno CorderoBJ. Chromatogr. B, 2019, 1133: 121824.

[88]

WangS, HuS, XuHAnal. Chim. Acta, 2015, 900: 67.

[89]

WeinerJ, MaertzdorfJ, SutherlandJ S, DuffyF J, ThompsonE, SulimanS, McEwenG, ThielB, ParidaS K, ZylaJ, HanekomW A, MohneyR P, BoomW H, Mayanja-KizzaH, HoweR, DockrellH M, OttenhoffT H M, ScribaT J, ZakD E, WalzlG, KaufmannS H ENat. Commun., 2018, 9: 5208.

[90]

AntonowiczS, BodaiZ, WigginsT, MarkarS R, BoshierP R, GohY M, AdamM E, LuH, KudoH, RosiniF, GoldinR, MoralliD, GreenC M, PetersC J, HabibN, GabraH, FitzgeraldR C, TakatsZ, HannaG BNat. Commun., 2021, 12: 1454.

[91]

WangW, YangY, ChenZ, WangX, ZhangG-L, HeT, TongL, TangBAnal. Chem., 2024, 96: 787.

[92]

LiuJ, ZangQ, LiX, TuX, ZhuY, WangL, ZhaoZ, SongY, ZhangR, AblizZChin. Chem. Lett., 2023, 34: 108322.

[93]

PengG, TischU, AdamsO, HakimM, ShehadaN, BrozaY Y, BillanS, Abdah-BortnyakR, KutenA, HaickHNat. Nanotechnol., 2009, 4: 669.

[94]

ChristiansenA, DavidsenJ R, TitlestadI, VestboJ, BaumbachJJ. Breath Res., 2016, 10: 034002.

[95]

HakimM, BrozaY Y, BarashO, PeledN, PhillipsM, AmannA, HaickHChem. Rev., 2012, 112: 5949.

[96]

FuchsP, LoesekenC, SchubertJ K, MiekischWInt. J. Cancer, 2010, 126: 2663.

[97]

BagS, HendricksP I, ReynoldsJ C, CooksR GAnal. Chim. Acta, 2015, 860: 37.

[98]

LiZ, LiY, ZhanL, MengL, HuangX, WangT, LiY, NieZAnal. Chem., 2021, 93: 915

[99]

YuQ, GaoJ, YuX, ShiJ, LinL, WangXAnalyst, 2022, 147: 4903.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/