Room Temperature Mo2CTx MXene Sensor for Selective Detection of ppb-Level H2S

Ouhang Li , Bo Wang , Yong Liu , Xinxin Gao , Kan Zhang , Peng Sun , Fangmeng Liu , Geyu Lu

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 564 -572.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 564 -572. DOI: 10.1007/s40242-025-4253-3
Article

Room Temperature Mo2CTx MXene Sensor for Selective Detection of ppb-Level H2S

Author information +
History +
PDF

Abstract

The sensitive and selective detection of ppb-level (ppb: parts per billion) H2S using miniaturized and portable gas sensor is of great significance in environmental monitoring, medical diagnosis and many other fields. MXenes, with high electrical conductivity, large surface area, and abundant active sites, hold great promise for room temperature gas sensing applications. In this work, a room temperature H2S sensor was constructed utilizing Mo2CTx MXene sensitive material, synthesized by a typical LiF/HCl etching method. The H2S sensing characteristics of Mo2CTx sensor were further improved by controlling ultrasonic time and optimizing heat-treated temperature. The M-50 sensor utilizing optimized Mo2CTx sensing material exhibited good selectivity, the highest response value (−39.92%) to 1 ppm (ppm: parts per million) H2S, and the lowest detection limit of 30 ppb (theoretically 0.35 ppb). The enhanced H2S sensing properties are largely attributed to the fragmented nanosheet structure and surface defects caused by prolonging ultrasonic time and adjusting treatment temperature. Additionally, density functional theory (DFT) calculations demonstrated that surface Mo atom vacancy and edge of Mo2CTx could significantly improve the adsorption ability of H2S. The present work contributes to advancing exploration of Mo2CTx material in sensing applications.

Keywords

Room temperature H2S sensor / Mo2CTx MXene / Ultrasound / Vacuum heat treatment / Density functional theory (DFT) calculation / Engineering / Materials Engineering

Cite this article

Download citation ▾
Ouhang Li, Bo Wang, Yong Liu, Xinxin Gao, Kan Zhang, Peng Sun, Fangmeng Liu, Geyu Lu. Room Temperature Mo2CTx MXene Sensor for Selective Detection of ppb-Level H2S. Chemical Research in Chinese Universities, 2025, 41(3): 564-572 DOI:10.1007/s40242-025-4253-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KunduS, GorthalaG, GhoshRSens Actuators B: Chem., 2024, 416: 136018.

[2]

DebM, LuC-J, ZanH-WACS Sens., 2024, 9: 4568.

[3]

Du W., Su X., Yang H., Dong S., Chen L., Shang J., Su L., Liu S., Wu L., Wu N., Ceram. Int., 2024, 47939.

[4]

ZangD, WeiX, LiuQ, LiY, YouRAppl. Surf. Sci., 2025, 679: 161149.

[5]

ParkK-R, ChoH-B, LeeJ, SongY, KimW-B, ChoaY-HSens. Actuators B: Chem., 2020, 302: 127179.

[6]

Malone RubrightS L, PearceL L, PetersonJNitric. Oxide, 2017, 71: 1.

[7]

QiuC-K, WangL, AnF, ZhangH, LiQ-R, WangH-Z, LiM-J, GuoJ-Y, JiaP-L, LiuZ-W, ZhuL, XuW, ZhangD-ZRare Met., 2025, 44: 1170.

[8]

ElwoodMInt. J. Environ. Res. Public Health, 2021, 18: 6.

[9]

ShangguanC, WeiX, DongM, LiY, ZhuL, WangJ, YouRAppl. Surf. Sci., 2024, 669: 160518.

[10]

SunH, ZhangZ, TianX, LuM, WangB, ZhangP, CuiG, DuL, XueKAppl. Surf. Sci., 2024, 643: 158683.

[11]

HuoY, QiuL, WangT, YuH, YangW, DongX, YangYACS Sens., 2024, 9: 3433.

[12]

WangY, ZhangS, XiaoD, WangS, ZhangT, YangX, HengS, SunMSens. Actuators B: Chem., 2023, 374: 132823.

[13]

ToombsC F, InskoM A, WintnerE A, DeckwerthT L, UsanskyH, JamilK, GoldsteinB, CooremanM, SzaboCBr. J. Clin. Pharmacol., 2010, 69: 626.

[14]

Van den VeldeS, van SteenbergheD, Van HeeP, QuirynenMJ. Dent. Res., 2009, 88: 285.

[15]

ChoiJ, ChaconB, ParkH, HantanasirisakulK, KimT, ShevchukK, LeeJ, KangH, ChoS-Y, KimJ, GogotsiY, KimS J, JungH-TACS Sens., 2022, 7: 2225.

[16]

WangY, WangY, JianM, JiangQ, LiXNano-Micro Lett., 2024, 16: 209.

[17]

PasupuletiK S, ThomasA M, VidyasagarD, RaoV N, YoonS-G, KimY-H, KimS-G, KimM-DACS Mater. Lett., 2023, 5: 2739.

[18]

YanL, ChenY-H, XieJ-C, LiHRare Met., 2025, 44: 1067.

[19]

TaiH, DuanZ, HeZ, LiX, XuJ, LiuB, JiangYSens. Actuators B Chem., 2019, 298: 126874.

[20]

LeeE, VahidMohammadiA, ProrokB C, YoonY S, BeidaghiM, KimD-JACS Appl. Mater. Interfaces, 2017, 9: 37184.

[21]

YangZ, LiuA, WangC, LiuF, HeJ, LiS, WangJ, YouR, YanX, SunP, DuanY, LuGACS Sens., 2019, 4: 1261.

[22]

YangZ, ZouH, ZhangY, LiuF, WangJ, LvS, JiangL, WangC, YanX, SunP, ZhangL, DuanY, LuGAdv. Funct. Mater., 2022, 32: 2108959.

[23]

YangZ, JiangL, WangJ, LiuF, HeJ, LiuA, LvS, YouR, YanX, SunP, WangC, DuanY, LuGSens. Actuators B: Chem., 2021, 326: 128828.

[24]

Hosseini-ShokouhS H, ZhouJ, BergerE, LvZ-P, HongX, VirtanenV, KordasK, KomsaH-PACS Appl. Mater. Interfaces, 2023, 15: 7063.

[25]

XuQ, ZongB, LiQ, FangX, MaoS, OstrikovKJ. Hazard. Mater., 2022, 424: 127492.

[26]

ZhangH, WangX, SunW, JiangY, WangX, DongY, JiaF, WangX, SunM, YinGJ. Alloys Compd., 2023, 938: 168662.

[27]

LiQ, LiY, ZengWChemosensors, 2021, 9: 225.

[28]

Khorsand KazemiK, HuS, NiksanO, AdhikariK K, TanguyN R, LiS, ArjmandM, ZarifiM HAdv. Mater. Interfaces, 2022, 9: 2102411.

[29]

MeiJ, AyokoG A, HuC, BellJ M, SunZSustainable Mater. Technol., 2020, 25: e00156.

[30]

AttanayakeN H, BanjadeH R, ThenuwaraA C, AnasoriB, YanQ, StronginD RChemComm, 2021, 57: 1675

[31]

ZhaX-H, LuoK, LiQ, HuangQ, HeJ, WenX, DuSEurophysics Letters, 2015, 111: 26007.

[32]

VelusamyD B, El-DemellawiJ K, El-ZohryA M, GiugniA, LopatinS, HedhiliM N, MansourA E, FabrizioE D, MohammedO F, AlshareefH NAdv. Mater., 2019, 31: 1807658.

[33]

WangB, GaoX, HeJ, XiaoY, LiuY, JiaX, ZhangK, WangC, SunP, LiuF, LuGSens. Actuators B: Chem., 2024, 399: 134790.

[34]

ChenY, LiZ, TangT, ChengY, ChengL, WangX, HaidryA, JannatA, OuJACS Appl. Nano Mater., 2024, 7: 3229.

[35]

GuoW, SuryaS G, BabarV, MingF, SharmaS, AlshareefH N, SchwingenschlöglU, SalamaK NACS Appl. Mater. Interfaces, 2020, 12: 57218.

[36]

TanY, YiM, ZhuZ, ZhangX, QinK, ZhangJ, ZhuRMater. Sci. Eng. B, 2021, 271: 115239.

[37]

LiangJ, ChenT, LiuJ, ZhangQ, PengW, LiY, ZhangF, FanXChem. Eng. J., 2020, 391: 123472.

[38]

HalimJ, KotaS, LukatskayaM R, NaguibM, ZhaoM-Q, MoonE J, PitockJ, NandaJ, MayS J, GogotsiY, BarsoumM WAdv. Funct. Mater., 2016, 26: 3118.

[39]

SehZ W, FredricksonK D, AnasoriB, KibsgaardJ, StricklerA L, LukatskayaM R, GogotsiY, JaramilloT F, VojvodicAACS Energy Lett., 2016, 1: 589.

[40]

GuoY, JinS, WangL, HeP, HuQ, FanL-Z, ZhouACeram. Int., 2020, 46: 19550.

[41]

LiuY, TianY, LiuF, GuT, WangB, HeJ, WangC, MengX, SunP, LuGAdv. Sci., 2024, 11: 2404178.

[42]

LiuT, ZhuW, WangN, ZhangK, WenX, XingY, LiYAdv. Sci., 2023, 10: 2302503.

[43]

CaiY, LiuD, PanZ, YaoY, LiJ, QiuYFuel, 2013, 103: 258.

[44]

LiuC J, WangG X, SangS X, RudolphVFuel, 2010, 89: 2665.

[45]

QiL, TangX, WangZ, PengXInt. J. Min. Sci. Technol., 2017, 27: 371.

[46]

ZhouW, HanJ, KongD, GaoY, GaoY, WangY, LuGSens. Actuators B: Chem., 2023, 396: 134614.

[47]

PazniakH, VarezhnikovA S, KolosovD A, PluginI A, Di VitoA, GlukhovaO E, SheverdyaevaP M, SpasovaM, KaikovI, KolesnikovE A, MorasP, BainyashevA M, SolomatinM A, KiselevI, WiedwaldU, SysoevV VAdv. Mater., 2021, 33: 2104878.

[48]

LiJ, ChiZ, QinR, YanL, LinX, HuM, ShanG, ChenH, WengY-XJ. Phys. Chem. C, 2020, 124: 10306.

[49]

ZhangD, JiangJ, YangY, LiF, YuH, DongX, WangTSens. Actuators B: Chem., 2024, 410: 135727.

[50]

TangL, WangH, DuZ, ZhuC, MaC, ZengDACS Appl. Nano Mater., 2024, 7: 5442.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/