Mass Spectrometry Imaging for Cellular-level Analysis: Advances and Applications on Medical Research

Yile Yu , Jinghan Fan , Huihui Liu , Zongxiu Nie

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 254 -265.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 254 -265. DOI: 10.1007/s40242-025-4251-5
Review

Mass Spectrometry Imaging for Cellular-level Analysis: Advances and Applications on Medical Research

Author information +
History +
PDF

Abstract

Mass spectrometry (MS) is widely used in medical applications, such as pharmacokinetics, drug discovery, and clinical diagnostics, as it enables medical researchers and practitioners to gain insights into pathogenic mechanisms, identify biomarkers for diagnosis and monitoring, and develop new treatments. Mass spectrometry imaging (MSI) is a powerful analytical technique that combines the spatial information from imaging with the chemical information from MS. MSI assists medical researchers in various ways, including biomarker discovery, drug development and evaluation, personalized medicine, tissue imaging, and histochemical analysis. In addition, MSI not only provides high-resolution images of sample structures and enables researchers to identify specific cell types and their functions, but also enables the simultaneous visualization of multiple biomolecules within a single cell and allows researchers to study complex biological processes with greater precision. In this review, we summarize recent advances in MSI for single cells and cellular-level analysis and discuss how this technology can be used to improve our understanding of diseases and develop new treatments. The potential challenges and limitations of MSI in single-cell analysis, as well as prospects in this field, are also highlighted.

Keywords

Single cell analysis / Cellular-level / Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) / Secondary ion mass spectrometry (SIMS)-Imaging / Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) / Biological Sciences / Biochemistry and Cell Biology / Chemical Sciences / Analytical Chemistry

Cite this article

Download citation ▾
Yile Yu, Jinghan Fan, Huihui Liu, Zongxiu Nie. Mass Spectrometry Imaging for Cellular-level Analysis: Advances and Applications on Medical Research. Chemical Research in Chinese Universities, 2025, 41(2): 254-265 DOI:10.1007/s40242-025-4251-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ColleyM E, EsselmanA B, ScottC F, SpragginsJ MAnnu. Rev. Anal. Chem., 2024, 17: 1.

[2]

YuY L, ZhuY X, YangJ, ZhuW T, ZhouZ Q, ZhangR KMetabolites, 2021, 11: 381.

[3]

Uttam SinghB, AtamjitS, DeekshaS, ManishSSpectroscopic Analyses, 2017RijekaIntechOpen

[4]

Illes-TothE, HaleO J, HughesJ W, StrittmatterN, RoseJ, ClaytonB, SargeantR, JonesS, DannhornA, GoodwinR J A, CooperH JAngew. Chem. Int. Ed., 2022, 61: e202202075.

[5]

AboulnasrA A, ElnouriA, Abdel SameeaG, GoudaA S, IbrahimM M, ShalabiT A, GaberK RJ. Obstet. Gynaecol. Res., 2022, 48: 682.

[6]

ShigematsuY, KikawaY, SudoM, KanaokaH, FujiokaM, DanMClin. Chim. Acta, 1991, 203: 369.

[7]

BriandG, LemaireS, ParenteF, GarnotelRAnn. Biol. Clin., 2015, 73: 93

[8]

SpitzerA R, ChaceDClin. Perinatol., 2006, 33: 729.

[9]

BanerjeeSACS Omega, 2020, 5: 2041.

[10]

CilentoE M, JinL, StewartT, ShiM, ShengL, ZhangJJ. Neurochem., 2019, 151: 397.

[11]

HaagA MModern Proteomics—Sample Preparation, Analysis and Practical Applications, 2016ChamSpringer International Publishing

[12]

HossainMSelected Reaction Monitoring Mass Spectrometry (SRM-MS) in Proteomics: A Comprehensive View, 2020ChamSpringer International Publishing.

[13]

HonigR, WoolstonJAppl. Phys. Lett., 1963, 2: 138.

[14]

BergmanN, ShevchenkoD, BergquistJAnal. Bioanal. Chem., 2014, 406: 49.

[15]

JiangY, SunJ, CaoX, LiuH, XiongC, NieZChemistry: A European Journal, 2022, 28: e202103710.

[16]

MengL, HanJ, ChenJ, WangX, HuangX, LiuH, NieZAnal. Chem., 2022, 94: 6457.

[17]

Nemes P., Vertes A., J. Vis. Exp., 2010, e2097.

[18]

NemesP, VertesAAnal. Chem., 2007, 79: 8098.

[19]

WirtzT, PhilippP, AudinotJ N, DowsettD, EswaraSNanotechnology, 2015, 26: 434001.

[20]

RaoW, ScurrD, BurstonJ, AlexanderM, BarrettDThe Analyst, 2012, 137: 3946.

[21]

PaceH E, RogersN J, JarolimekC, ColemanV A, HigginsC P, RanvilleJ FAnal. Chem., 2011, 83: 9361.

[22]

MellonF AEncyclopedia of Food Sciences and Nutrition (Second Edition), 2003OxfordAcademic Press

[23]

RidgewayM E, LubeckM, JordensJ, MannM, ParkM AInt. J. Mass Spectrom., 2018, 425: 22.

[24]

DouglasD J, FrankA J, MaoDMass Spectrom. Rev., 2005, 24: 1.

[25]

SoykM W, ZhaoQ, HoukR S, BadmanE RJ. Am. Soc. Mass Spectrom., 2008, 19: 1821.

[26]

NoltingD, MalekR, MakarovAMass Spectrom. Rev., 2019, 38: 150.

[27]

StaffordG C, KelleyP E, SykaJ E P, ReynoldsW E, ToddJ F JInt. J. Mass Spectrom. Ion Processes, 1984, 60: 85.

[28]

AustinD E, WangM, TolleyS E, MaasJ D, HawkinsA R, RockwoodA L, TolleyH D, LeeE D, LeeM LAnal. Chem., 2007, 79: 2927.

[29]

GreavesJ, RobozJMass Spectrometry for the Novice, 2013Boca RatonCRC Press.

[30]

RobinsonE WFourier-Transform Ion Cyclotron Resonance Mass Spectrometry, 2017OxfordAcademic Press.

[31]

AdamsonJ T, HakanssonKElectrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Lectin Analysis, Chapter 14, 2007AmsterdamElsevier Science B.V.

[32]

MarshallA G, VerdunF RFourier Transform Spectrometry: Common Features, Chapter 4, 1990AmsterdamElsevier

[33]

ZubarevR A, MakarovAAnal. Chem., 2013, 85: 5288.

[34]

HuQ, NollR J, LiH, MakarovA, HardmanM, CooksR GJ. Mass Spectrom., 2005, 40: 430.

[35]

HechtE S, ScigelovaM, EliukS, MakarovAEncyclopedia of Analytical Chemistry, 2019ChichesterWiley Press

[36]

HardmanM, MakarovA AAnal. Chem., 2003, 75: 1699.

[37]

MakarovA, DenisovE, KholomeevA, BalschunW, LangeO, StrupatK, HorningSAnal. Chem., 2006, 78: 2113.

[38]

MeierF, ParkM A, MannMMol. Cell Proteomics, 2021, 20: 100138.

[39]

EicemanG A, KarpasZIon Mobility Spectrometry, 2005Boca RatonCRC Press.

[40]

EwaldJ CIon Detection in Mass Spectrometry, 1992DordrechtSpringer Netherlands

[41]

ImrieD C, PentneyJ M, CottrellJ SRapid Commun. Mass Spectrom., 1995, 9: 1293.

[42]

BarnesJ H, HieftjeG MInt. J. Mass Spectrom., 2004, 238: 33.

[43]

JungmannJ H, HeerenR M ARapid Commun. Mass Spectrom., 2013, 27: 1.

[44]

BoerboomA J H J J O M SJournal of Mass Spectrometry: JMS, 1991, 26: 929

[45]

CollinsR DVacuum, 1969, 19: 105.

[46]

DuboisF, KnochenmussR, ZenobiRInt. J. Mass Spectrom. Ion Processes, 1997, 169/170: 89.

[47]

LiangY, FengQ, WangZFrontiers in Pharmacology, 2022, 13: 887050.

[48]

MaX, FernándezF MMass Spectrom. Rev., 2024, 43: 235.

[49]

ZhanL, HuangX, XueJ, LiuH, XiongC, WangJ, NieZFood Chem., 2021, 338: 127984.

[50]

SwalesJ G, TuckerJ W, StrittmatterN, NilssonA, CobiceD, ClenchM R, MacKayC L, AndrenP E, TakátsZ, WebbornP J, GoodwinR JAnal. Chem., 2014, 86: 8473.

[51]

McDonnellL A, AngelP M, LouS, DrakeR RAdv. Cancer Res., 2017, 134: 283.

[52]

ChenC, McDonaldD, BlainA, SachdevaA, BoneL, SmithA L M, WarrenC, PickettS J, HudsonG, FilbyA, VincentA E, TurnbullD M, ReeveA KNPJ Parkinson’s Disease, 2021, 7: 39.

[53]

LecaultV, WhiteA K, SinghalA, HansenC LCurr. Opin. Chem. Biol., 2012, 16: 381.

[54]

CheowL FSLAS Technology., 2022, 27: 107.

[55]

HwangD-W, MaekiniemiA, SingerR H, SatoHNat. Rev. Genet., 2024, 25: 272.

[56]

LiuZ, ChenJ, QiZ-MSingle-cell Analysis by Evanescent Wave Sensing and Hyperspectral Microscopy, Chapter 6, 2022CambridgeAcademic Press

[57]

LiY, MaL, WuD, ChenGBrief. Bioinform., 2021, 22: bbab024.

[58]

ZhuC, PreisslS, RenBNat. Meth., 2020, 17: 11.

[59]

WenL, LiG, HuangT, GengW, PeiH, YangJ, ZhuM, ZhangP, HouR, TianG, SuW, ChenJ, ZhangD, ZhuP, ZhangW, ZhangX, ZhangN, ZhaoY, CaoX, PengG, RenX, JiangN, TianC, ChenZ JInnovation, 2022, 3: 100342

[60]

XiongC, ZhouX, HeQ, HuangX, WangJ, PengW-P, ChangH-C, NieZAnal. Chem., 2016, 88: 11913.

[61]

ZhuX, XuT, PengC, WuSFrontiers in Chemistry, 2021, 9: 782432.

[62]

XuJ, ZhangZ, LiuR, SunY, LiuH, NieZ, ZhaoX, PuXBehav. Brain Res., 2019, 364: 233.

[63]

TianF, LiuR, FanC, SunY, HuangX, NieZ, ZhaoX, PuXMetabolites, 2020, 10: 27.

[64]

VestalM, LiL, DobrinskikhE, ShiY, WangB, ShiX, LiS, VestalC, ParkerKJ. Mass Spectrometry: JMS, 2020, 55: e4423.

[65]

DreisewerdKAnal. Bioanal. Chem., 2014, 406: 2261.

[66]

TanakaK, WakiH, IdoY, AkitaS, YoshidaY, YoshidaT, MatsuoTRapid Commun. Mass Spectrom., 1988, 2: 151.

[67]

HuangX, ZhanL, SunJ, XueJ, LiuH, XiongC, NieZAnal. Chem., 2018, 90: 8309.

[68]

KulkarniA S, HuangL, QianKJ. Mater. Chem. B, 2021, 9: 3622.

[69]

FagererS R, NielsenS, IbáñezA, ZenobiREuropean Journal of Mass Spectrometry, 2013, 19: 39.

[70]

FlatleyB, MaloneP, CramerRBiochim. Biophys. Acta, 2014, 1844: 940.

[71]

TrimP J, SnelM FMethods, 2016, 104: 127.

[72]

NorrisJ L, CaprioliR MChem. Rev., 2013, 113: 2309.

[73]

MachálkováM, PavlatovskáB, MichálekJ, PruškaA, ŠtěpkaK, NečasováT, RadaszkiewiczK A, KozubekM, ŠmardaJ, PreislerJ, NavrátilováJAnal. Chem., 2019, 91: 13475.

[74]

MinervaL, CeulemansA, BaggermanG, ArckensLProteomics Clinical Applications, 2012, 6: 581.

[75]

WuT, YangX-H, ZhangC-J, WangZ-P, DuY-PChin. Chem. Lett., 2016, 27: 901.

[76]

FülöpA, SammourD A, ErichK, von GerichtenJ, van HoogevestP, SandhoffR, HopfCScientific Reports, 2016, 6: 33791.

[77]

CobiceD F, GoodwinR J A, AndrénP E, NilssonA, MacKayC L, AndrewRBr. J. Pharmacol., 2015, 172: 3266.

[78]

CuypersE, ClaesB S R, BiemansR, LieuwesN G, GlundeK, DuboisL, HeerenR M AAnal. Chem., 2022, 94: 6180.

[79]

CastroD C, SmithK W, NorsworthyM D, RubakhinS S, WeisbrodC R, HendricksonC L, SweedlerJ VAnal. Chem., 2023, 95: 6980.

[80]

ChenX, WoF, ChenJ, TanJ, WangT, LiangX, WuJScientific Reports, 2017, 7: 17432.

[81]

NiehausM, SoltwischJ, BelovM E, DreisewerdKNat. Meth., 2019, 16: 925.

[82]

BienT, BesslerS, DreisewerdK, SoltwischJAnal. Chem., 2021, 93: 4513.

[83]

SchlauchD, FuX, JonesS F, BurrisH A3rd, SpigelD R, ReevesJ, McKenzieA JJCO Precision Oncology, 2021, 5: 1625.

[84]

SunD, GuanX, MoranA E, WuL-Y, QianD Z, SchedinP, DaiM-S, DanilovA V, AlumkalJ J, AdeyA C, SpellmanP T, XiaZNat. Biotechnol., 2022, 40: 527.

[85]

CarellaR, DeleonardiG, D’ErricoA, SalernoA, Egarter-ViglE, SeebacherC, DonazzanG, GrigioniW FAm. J. Surg. Pathol., 2001, 25: 43.

[86]

GownA MArch. Pathol. Lab. Med., 2016, 140: 893.

[87]

SteurerS, SeddiqiA S, SingerJ M, BaharA S, EichelbergC, RinkM, DahlemR, HulandH, SauterG, SimonR, MinnerS, BurandtE, StahlP R, SchlommT, WurlitzerM, SchlüterHAnticancer Res., 2014, 34: 2255

[88]

MögingerU, MarcussenN, JensenO NOncotarget., 2020, 11: 3998.

[89]

BerghmansE, van RaemdonckG, SchildermansK, WillemsH, BoonenK, MaesE, MertensI, PauwelsP, BaggermanGMethods Protoc., 2019, 2: 44.

[90]

OuF-S, MichielsS, ShyrY, AdjeiA A, ObergA LJ. Thorac. Oncol., 2021, 16: 537.

[91]

ReardonB, MooreN D, MooreN S, KofmanE, AlDubayanS H, CheungA T M, ConwayJ, ElmarakebyH, ImamovicA, KamranS C, KeenanT, KeliherD, KonieczkowskiD J, LiuD, MouwK W, ParkJ, VokesN I, DietleinF, van AllenE MNature Cancer, 2021, 2: 1102.

[92]

BelkacemR A, BolV, HammG, LinehanS, GomesB, StauberJCancer Res., 2017, 77: 718.

[93]

O’RourkeM B, RoedigerB R, JollyC J, CrossettB, PadulaM P, HansbroP MProteomes, 2022, 10: 33.

[94]

LiuH, ZhouY, WangJ, XiongC, XueJ, ZhanL, NieZAnal. Chem., 2018, 90: 729.

[95]

ShaoC-F, ZhaoY, WuK, JiaF-F, LuoQ, LiuZ, WangF-YChinese J. Anal. Chem., 2018, 46: 1005.

[96]

McPhailD SJ. Mater. Sci., 2006, 41: 873.

[97]

WalkerA VEncyclopedia of Spectroscopy and Spectrometry (Third Edition), 2017OxfordAcademic Press

[98]

BenninghovenASurf. Sci., 1973, 35: 427.

[99]

BenninghovenASurf. Sci., 1975, 53: 596.

[100]

McIntyreN S, HuctwithC M, TaylorK F, KeatingE, PetersenN O, BrennenstühlA MSurf. Interface Anal., 2002, 33: 447.

[101]

SaitoK, KatoT, TakamoriH, KishimotoT, FukushimaKBiomacromolecules, 2005, 6: 2688.

[102]

DingY, ZhouY, YaoJ, SzymanskiC, FredricksonJ, ShiL, CaoB, ZhuZ, YuX-YAnal. Chem., 2016, 88: 11244.

[103]

OstrowskiS G, van BellC T, WinogradN, EwingA GScience, 2004, 305: 71.

[104]

ChandraS, MorrisonG HBiol. Cell, 1992, 74: 31.

[105]

LockyerN PSecondary Ion Mass Spectrometry Imaging of Biological Cells and Tissues, 2014TotowaHumana Press.

[106]

BhardwajC, HanleyLNat. Prod. Rep., 2014, 31: 756.

[107]

FletcherJ S, VickermanJ CAnal. Chem., 2013, 85: 610.

[108]

DengR C, WilliamsPAnal. Chem., 1989, 61: 1946.

[109]

WernerH WSurf. Interface Anal., 1980, 2: 56.

[110]

CooperE, LeggettG JLangmuir, 1998, 14: 4795.

[111]

Guerquin-KernJ-L, WuT-D, QuintanaC, CroisyABiochimica et Biophysica Acta: General Subjects, 2005, 1724: 228.

[112]

McDonnellL A, HeerenR MMass Spectrom. Rev., 2007, 26: 606.

[113]

LovričJ, MalmbergP, JohanssonB R, FletcherJ S, EwingA GAnal. Chem., 2016, 88: 8841.

[114]

LiD, OuyangZ, MaXMolecules, 2023, 28: 2712.

[115]

NounM, AkoumehR, AbbasIMicrosc. Microanal., 2022, 28: 1.

[116]

ZhangC, HorikawaM, KahyoT, MatsudairaT, TanakaT, XuL, TakeiS, SetouMMicroscopy, 2022, 71: 324.

[117]

FletcherJ S, RabbaniS, HendersonA, LockyerN P, VickermanJ CRapid Commun. Mass Spectrom., 2011, 25: 925.

[118]

MalmJ, GiannarasD, RiehleM O, GadegaardN, SjövallPAnal. Chem., 2009, 81: 7197.

[119]

ChandraS, MorrisonG H, WolcottC CJ. Microsc., 1986, 144: 15.

[120]

SodE W, CrookerA R, MorrisonG HJ. Microsc., 1990, 160: 55.

[121]

RoddyT P, CannonD M, OstrowskiS G, WinogradN, EwingA GAnal. Chem., 2002, 74: 4020.

[122]

FartmannM, DambachS, KriegeskotteC, WiesmannH P, WittigA, SauerweinW, LipinskyD, ArlinghausH FSurf. Interface Anal., 2002, 34: 63.

[123]

CaiL, XiaM-C, LiZ, ZhangS, ZhangXProgress in Chemistry, 2021, 33: 97

[124]

SteinhauserM L, BaileyA P, SenyoS E, GuillermierC, PerlsteinT S, GouldA P, LeeR T, LecheneC PNature, 2012, 481: 516.

[125]

HuangL, ChenY, WengL-T, LeungM, XingX, FanZ, WuHAnal. Chem., 2016, 88: 12196.

[126]

JungnickelH, LauxP, LuchAToxics, 2016, 4: 5.

[127]

KempsonI M, HwuY, PrestidgeC AProbing Protein Association with Nano- and Micro-scale Structures with ToF-SIMS, 2012WashingtonAmerican Chemical Society.

[128]

KerenL, BosseM, MarquezD, AngoshtariR, JainS, VarmaS, YangS-R, KurianA, van ValenD, WestR, BendallS C, AngeloMCell, 2018, 174: 1373.

[129]

ChandraS, AhmadT, BarthR F, KabalkaG WJ. Microsc., 2014, 254: 146.

[130]

NewmanC F, HavelundR, PassarelliM K, MarshallP S, FrancisI, WestA, AlexanderM R, GilmoreI S, DolleryC TAnal. Chem., 2017, 89: 11944.

[131]

WedlockL E B-P, SusanJAust. J. Chem., 2011, 64: 692.

[132]

PassarelliM K, NewmanC F, MarshallP S, WestA, GilmoreI S, BunchJ, AlexanderM R, DolleryC TAnal. Chem., 2015, 87: 6696.

[133]

DesbenoitN, Schmitz-AfonsoI, BaudouinC, LaprévoteO, TouboulD, Brignole-BaudouinF, BrunelleAAnal. Bioanal. Chem., 2013, 405: 4039.

[134]

SjövallP, LausmaaJ, JohanssonBAnal. Chem., 2004, 76: 4271.

[135]

DeboisD, BraletM-P, Le NaourF, BrunelleA, LaprévoteOAnal. Chem., 2009, 81: 2823.

[136]

TakátsZ, WisemanJ M, GologanB, CooksR GScience, 2004, 306: 471.

[137]

ClaudeE, JonesE A, PringleS DMethods Mol. Biol., 2017, 1618: 65.

[138]

ChenH, ZhengJ, ZhangX, MingbiaoL, WangZ, QiaoXJournal of Mass Spectrometry: JMS, 2007, 42: 1045.

[139]

ManickeN E, NefliuM, WuC, WoodsJ W, ReiserV, HendricksonR C, CooksR GAnal. Chem., 2009, 81: 8702.

[140]

GirodM, ShiY, ChengJ-X, CooksR GJ. Am. Soc. Mass Spectrom., 2010, 21: 1177.

[141]

MaY, ChenZ, HeQ, GuoZ-N, YangY, LiuF, LiF, LuoQ, ChangJPharmacol. Res., 2022, 185: 106482.

[142]

FresnaisM, LiangS, BreitkopfM, LindnerJ R, ClaudeE, PringleS, LevkinP A, DemirK, BenzelJ, SundheimerJ, StatzB, PajtlerK W, PfisterS M, HaefeliW E, BurhenneJ, LonguespéeRPharmaceuticals, 2022, 15: 694.

[143]

YanX, ZhaoX, ZhouZ, McKayA, BrunetA, ZareR NAnal. Chem., 2020, 92: 13281.

[144]

PirroV, EberlinL S, OliveriP, CooksR GAnalyst, 2012, 137: 2374.

[145]

PirroV, OliveriP, FerreiraC R, González-SerranoA F, MachatyZ, CooksR GAnal. Chim. Acta, 2014, 848: 51.

[146]

YangM, UnsihuayD, HuH, Nguele MekeF, QuZ, ZhangZ-Y, LaskinJAnal. Chem., 2023, 95: 5214.

[147]

UnsihuayD, HuH, QiuJ, Latorre-PalominoA, YangM, YueF, YinR, KuangS, LaskinJChem. Sci., 2023, 14: 4070.

[148]

RoachP J, LaskinJ, LaskinAAnalyst, 2010, 135: 2233.

[149]

IqfathM, WaliS N, AmerS, HernlyE, LaskinJACS Measurement Science Au., 2024, 4: 475.

[150]

HeM J, PuW, WangX, ZhangW, TangD, DaiYFrontiers in Oncology, 2022, 12: 891018.

[151]

ShariatgorjiM, StrittmatterN, NilssonA, KällbackP, AlvarssonA, ZhangX, VallianatouT, SvenningssonP, GoodwinR J A, AndrenP ENeuroimage, 2016, 136: 129.

[152]

ZhangX, WuC, TanWJ. Proteome Res., 2021, 20: 2643.

[153]

GuoR, ZhouL, ChenXAnal. Bioanal. Chem., 2021, 413: 5835.

[154]

MacielL, MartinsR O, GondimD M, OliveiraJ V A, PereiraJ, PereiraG, FerreiraL, ChavesA R, VazB GBrazilian Journal of Analytical Chemistry, 2022, 10: 18

[155]

MacielL I L, PereiraI, RamalhoR R F, RibeiroR I, PintoM C X, VazB GInt. J. Mass Spectrom., 2022, 471: 116730.

[156]

HuangJ, GaoS, WangK, ZhangJ, PangX, ShiJ, HeJChin. Chem. Lett., 2023, 34: 107865.

[157]

DolatmoradiM, StopkaS A, CorningC, StaceyG, VertesAAnal. Chem., 2023, 95: 17741.

[158]

HietaJ-P, KopraJ, RäikkönenH, KauppilaT J, KostiainenRAnal. Chem., 2020, 92: 13734.

[159]

StopkaS A, VertesAMethods Mol. Biol., 2020, 2084: 235.

[160]

StopkaS A, WoodE A, KhattarR, AgtucaB J, AbdelmoulaW M, AgarN Y R, StaceyG, VertesAAnal. Chem., 2021, 93: 9677.

[161]

KissA, SmithD F, ReschkeB R, PowellM J, HeerenR MProteomics, 2014, 14: 1283.

[162]

ShresthaB, VertesAAnal. Chem., 2014, 86: 4308.

[163]

NiziołJ, SunnerJ, BeechI, OssolinskiK, OssolinskaA, OssolinskiT, PłazaA, RumanTAnal. Chem., 2020, 92: 4251.

[164]

StopkaS A, RongC, KorteA R, YadavilliS, NazarianJ, RazunguzwaT T, MorrisN J, VertesAAngew. Chem. Int. Ed., 2016, 55: 4482.

[165]

DavisonC, BesteD, BaileyM, Felipe-SoteloMAnal. Bioanal. Chem., 2023

[166]

ZhengL-N, SangY-B, LuoR-P, WangB, YiF-T, WangM, FengW-YJ. Anal. At. Spectrom., 2019, 34: 915.

[167]

KonzI, FernándezB, FernándezM L, PereiroR, GonzálezH, ÁlvarezL, Coca-PradosM, Sanz-MedelAAnal. Bioanal. Chem., 2013, 405: 3091.

[168]

CaprioliR MProteomics, 2008, 8: 3679.

[169]

SeeleyE HClin. Chem., 2021, 67: 1172.

[170]

PólJ, StrohalmM, HavlíčekV, VolnýMHistochem. Cell Biol., 2010, 134: 423.

[171]

EwingA GAppl. Surf. Sci., 2006, 252: 6821.

[172]

StauberJBioanalysis, 2012, 4: 2095.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

281

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/