Advanced In situ Characterization Techniques for Photocatalysis

Miao Hu , Jumanah Alharbi , Huabin Zhang , Hassan S. Al Qahtani , Chengyang Feng

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 237 -253.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 237 -253. DOI: 10.1007/s40242-025-4249-z
Review

Advanced In situ Characterization Techniques for Photocatalysis

Author information +
History +
PDF

Abstract

Photocatalysis is a promising approach for solar energy conversion and environmental remediation, which has garnered increasing attention. Advanced in situ characterization techniques enable real-time observation of dynamic changes in catalyst structure, charge transfer, and surface species during photocatalytic reactions, which is crucial for understanding the relationship between photocatalyst structure and activity. This review summarizes the main applications of in situ characterization techniques in photocatalysis, discusses their contributions to optimizing photocatalyst performance for enhanced solar energy conversion and environmental applications, provides guidance for designing in situ experiments to understand catalytic mechanisms, and presents an outlook on the future development of in situ characterization techniques in photocatalysis.

Keywords

In situ characterization / Photocatalysis / Real-time observation / Chemical Sciences / Physical Chemistry (incl. Structural) / Engineering / Materials Engineering

Cite this article

Download citation ▾
Miao Hu, Jumanah Alharbi, Huabin Zhang, Hassan S. Al Qahtani, Chengyang Feng. Advanced In situ Characterization Techniques for Photocatalysis. Chemical Research in Chinese Universities, 2025, 41(2): 237-253 DOI:10.1007/s40242-025-4249-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FujishimaA, HondaKNature, 1972, 238: 37.

[2]

MengA, ZhangJ, XuD, ChengB, YuJAppl. Catal. B: Environ., 2016, 198: 286.

[3]

ZongX, YanH, WuG, MaG, WenF, WangL, LiCJ. Am. Chem. Soc., 2008, 130: 7176.

[4]

MartinD J, QiuK, ShevlinS A, HandokoA D, ChenX, GuoZ, TangJAngew. Chem. Int. Ed., 2014, 53: 9240.

[5]

WangY, SuzukiH, XieJ, TomitaO, MartinD J, HigashiM, KongD, AbeR, TangJChem. Rev., 2018, 118: 5201.

[6]

LiuX, YeM, ZhangS, HuangG, LiC, YuJ, WongP K, LiuSJ. Mater. Chem. A, 2018, 6: 24245.

[7]

SorcarS, ThompsonJ, HwangY, ParkY H, MajimaT, GrimesC A, DurrantJ R, InS-IEnergy Environ. Sci., 2018, 11: 3183.

[8]

ShiX, HuangY, BoY, DuanD, WangZ, CaoJ, ZhuG, HoW, WangL, HuangTAngew. Chem. Int. Ed., 2022, 134: e202203063.

[9]

GhumanK K, WoodT E, HochL B, MimsC A, OzinG A, SinghC VPhys. Chem. Chem. Phys., 2015, 17: 14623.

[10]

JiangZ, SunH, WangT, WangB, WeiW, LiH, YuanS, AnT, ZhaoH, YuJEnergy Environ. Sci., 2018, 11: 2382.

[11]

HeB, WangZ, XiaoP, ChenT, YuJ, ZhangLAdv. Mater., 2022, 34: 2203225.

[12]

SiahrostamiS, LiG-L, ViswanathanV, NørskovJ KJ. Phy. Chem. Lett., 2017, 8: 1157.

[13]

RaziqF, FengC, HuM, ZuoS, RahmanM Z, YanY, LiQ-H, GasconJ, ZhangHJ. Am. Chem. Soc., 2024, 146: 21008.

[14]

ZhouZ, ZengH, LiL, TangR, FengC, GongD, HuangY, DengYWater Res., 2024, 255: 121521.

[15]

FengC, BoT, MaityP, ZuoS, ZhouW, HuangK W, MohammedO F, ZhangHAdv. Funct. Mater., 2024, 34: 2309761.

[16]

FengC, WuZ P, HuangK W, YeJ, ZhangHAdv. Mater., 2022, 34: 2200180.

[17]

TaoX, ZhaoY, WangS, LiC, LiRChem. Soc. Rev., 2022, 51: 3561.

[18]

LiX, WangW, DongF, ZhangZ, HanL, LuoX, HuangJ, FengZ, ChenZ, JiaGACS Catal., 2021, 11: 4739.

[19]

ZhuM, SunZ, FujitsukaM, MajimaTAngew. Chem. Int. Ed., 2018, 57: 2160.

[20]

MaedaKACS Catal., 2013, 3: 1486.

[21]

HuangM, KongZ, AiZ, ShiD, YangM, YaoX, ShaoY, WuY, HaoXSmall, 2024, 20: 2304784.

[22]

O’BrienP G, SandhelA, WoodT E, AliF M, HochL B, PerovicD D, MimsC A, OzinG AAdv. Sci., 2014, 1: 1400001.

[23]

ZhangF, LiY-H, QiM-Y, YamadaY M, AnpoM, TangZ-R, XuY-JChem. Catal., 2021, 1: 272.

[24]

WangZ, ZhuJ, ZuX, WuY, ShangS, LingP, QiaoP, LiuC, HuJ, PanYAngew. Chem. Int. Ed., 2022, 61: e202203249.

[25]

FengC, TangL, DengY, WangJ, LuoJ, LiuY, OuyangX, YangH, YuJ, WangJAdv. Funct. Mater., 2020, 30: 2001922.

[26]

JungE, ShinH, LeeB-H, EfremovV, LeeS, LeeH S, KimJ, Hooch AntinkW, ParkS, LeeK-SNat. Mater., 2020, 19: 436.

[27]

ZhouZ, ZengH, FengC, LiL, TangR, LiW, HuangY, DengYEnergy Environ. Sci., 2024, 17: 5627.

[28]

ZhangM, TangL, ZhuY, ZhangY, LiuJ, WangJ, FengC, QiaoL, ChenYJ. Clean. Prod., 2023, 419: 138199.

[29]

TangR, ZengH, FengC, XiongS, LiL, ZhouZ, GongD, TangL, DengYSmall, 2023, 19: 2207636.

[30]

OuyangX, FengC, ZhuX, LiaoY, FanX, ZhouZ, ZhangZ, TangLEnviron. Sci.: Nano, 2023, 10: 229

[31]

OuyangX, FengC, TangL, ZhuX, PengB, FanX, LiaoY, ZhouZ, ZhangZBiosens. Bioelectron., 2022, 197: 113734.

[32]

MuC, LvC, MengX, SunJ, TongZ, HuangKAdv. Mater. Inter., 2023, 10: 2201842.

[33]

ZuoS, WuZ P, ZhangH, LouX WAdv. Energy Mater., 2022, 12: 2103383.

[34]

ZhangL, RanJ, QiaoS-Z, JaroniecMChem. Soc. Rev., 2019, 48: 5184.

[35]

BentrupUChem. Soc. Rev., 2010, 39: 4718.

[36]

LiX, WangH Y, YangH, CaiW, LiuS, LiuBSmall Methods, 2018, 2: 1700395.

[37]

ZhangC, FiresteinK L, FernandoJ F, SiriwardenaD, von TreifeldtJ E, GolbergDAdv. Mater., 2020, 32: 1904094.

[38]

OuyangX, FengC, ZhuX, LiaoY, ZhouZ, FanX, ZhangZ, ChenL, TangLBiosens. Bioelectron., 2023, 220: 114817.

[39]

OuyangX, TangL, FengC, PengB, LiuY, RenX, ZhuX, TanJ, HuXBiosens. Bioelectron., 2020, 164: 112328.

[40]

SeegererA, NitschkeP, GschwindR MAngew. Chem. Int. Ed., 2018, 130: 7615.

[41]

ZhangD, WangR, WangX, GogotsiYNat. Energy, 2023, 8: 567.

[42]

WangX, RosspeintnerA, ZiaratiA, ZhaoJ, BürgiTNat. Commun., 2022, 13: 5458.

[43]

LiX, WangS, LiL, SunY, XieYJ. Am. Chem. Soc., 2020, 142: 9567

[44]

YuD, WeiZ, ZhangX, ZengY, WangC, ChenG, ShenZ X, DuFAdv. Funct. Mater., 2021, 31: 2008743.

[45]

CaoX, TanD, WulanB, HuiK, HuiK, ZhangJSmall Methods, 2021, 5: 2100700.

[46]

WangY-H, ZhengS, YangW-M, ZhouR-Y, HeQ-F, RadjenovicP, DongJ-C, LiS, ZhengJ, YangZ-LNature, 2021, 600: 81.

[47]

GlassD, Quesada-CabreraR, BardeyS, PromdetP, SapienzaR, KellerV, MaierS A, CapsV, ParkinI P, CortésEACS Energy Lett., 2021, 6: 4273.

[48]

LiK, GeQ, LiuY, WangL, GongK, LiuJ, XieL, WangW, RuanX, ZhangLEnergy Environ. Sci., 2023, 16: 1135.

[49]

CaiZ-F, MerinoJ P, FangW, KumarN, RichardsonJ O, De FeyterS, ZenobiRJ. Am. Chem. Soc., 2021, 144: 538.

[50]

LiuX, LuoY, LingC, ShiY, ZhanG, LiH, GuH, WeiK, GuoF, AiZAppl. Catal. B: Environ., 2022, 301: 120766.

[51]

LiX, SunY, XuJ, ShaoY, WuJ, XuX, PanY, JuH, ZhuJ, XieYNat. Energy, 2019, 4: 690.

[52]

FengC, ZuoS, HuM, RenY, XiaL, LuoJ, ZouC, WangS, ZhuY, RuepingMNat. Commun., 2024, 15: 9088.

[53]

FengC, RaziqF, HuM, HuangH, WuZ P, ZuoS, LuoJ, RenY, ChangB, ChaD, AyiralaS, Al-YousefA, DaoT D, ZhangHAdv. Energy Mater., 2024, 14: 2303792.

[54]

KofujiY, OhkitaS, ShiraishiY, SakamotoH, TanakaS, IchikawaS, HiraiTACS Catal., 2016, 6: 7021.

[55]

TengZ, ZhangQ, YangH, KatoK, YangW, LuY-R, LiuS, WangC, YamakataA, SuCNat. Catal., 2021, 4: 374.

[56]

ChengW, ZhaoM, LaiY, WangX, LiuH, XiaoP, MoG, LiuB, LiuYRecent Advances in Battery Characterization Using In situ XAFS, SAXS, XRD, and Their Combining Techniques: From Single Scale to Multiscale Structure Detection, 202420230056Exploration

[57]

LeeJ-W, ParkW B, LeeJ H, SinghS P, SohnK-SNat. Commun., 2020, 11: 86.

[58]

GuanC, YangY, PangY, LiuZ, LiS, VovkE I, ZhouX, LiJ P H, ZhangJ, YuNJ. Catal., 2021, 396: 202.

[59]

ZhangF, LiuZ, ChenX, RuiN, BetancourtL E, LinL, XuW, SunC-J, AbeykoonA M, RodriguezJ AACS Catal., 2020, 10: 3274.

[60]

ZhangF, LiY, DingB, ShaoG, LiN, ZhangPSmall, 2023, 19: 2303867.

[61]

WangL, ChengB, ZhangL, YuJSmall, 2021, 17: 2103447.

[62]

LiY, WangL, ZhangF, ZhangW, ShaoG, ZhangPAdv. Sci., 2023, 10: 2205020.

[63]

ZhangJ, ZhangL, WangW, YuJJ. Phy. Chem. Lett., 2022, 13: 8462.

[64]

HanY, ZhangH, YuY, LiuZACS Catal., 2021, 11: 1464.

[65]

FangL, SeifertS, WinansR E, LiTSmall, 2022, 18: 2106017.

[66]

ZhangQ, LiZ, WangS, LiR, ZhangX, LiangZ, HanH, LiaoS, LiCACS Catal., 2016, 6: 2182.

[67]

ParkS H, KimS, ParkJ W, KimS, ChaW, LeeJNat. Commun., 2024, 15: 5416.

[68]

ZhangP, LiY, ZhangY, HouR, ZhangX, XueC, WangS, ZhuB, LiN, ShaoGSmall Methods, 2020, 4: 2000214.

[69]

HeC, WuS, LiQ, LiM, LiJ, WangL, ZhangJChem, 2023, 9: 3224.

[70]

FengC, HuM, ZuoS, LuoJ, CastañoP, RenY, RuepingM, ZhangHAdv. Mater., 2025, 37: 2411813.

[71]

ZhouJ, LiJ, KanL, ZhangL, HuangQ, YanY, ChenY, LiuJ, LiS-L, LanY-QNat. Commun., 2022, 13: 4681.

[72]

DingJ, TengZ, SuX, KatoK, LiuY, XiaoT, LiuW, LiuL, ZhangQ, RenXChem, 2023, 9: 1017.

[73]

PiccoloL, AfanasievP, MorfinF, LenT, DessalC, RoussetJ L, AouineM, BourgainF, Aguilar-TapiaA, ProuxOACS Catal., 2020, 10: 12696.

[74]

ZhangH, ZuoS, QiuM, WangS, ZhangY, ZhangJ, LouX WSci. Adv., 2020, 6: eabb9823.

[75]

ZhangX, SuH, CuiP, CaoY, TengZ, ZhangQ, WangY, FengY, FengR, HouJNat. Commun., 2023, 14: 7115.

[76]

BonkeS A, RisseT, SchneggA, BrücknerANat. Rev. Methods Primers, 2021, 1: 33.

[77]

LiuH, ZhangF, WangH, XueJ, GuoY, QianQ, ZhangGEnergy Environ. Sci., 2021, 14: 5339.

[78]

ZhangS, ZhaoY, MiaoY, XuY, RanJ, WangZ, WengY, ZhangTAngew. Chem. Int. Ed., 2022, 61: e202211469.

[79]

XiaoJ, XieY, RabeahJ, BrücknerA, CaoHAcc. Chem. Res., 2020, 53: 1024.

[80]

MadaniA, PieberBChemCatChem, 2023, 15: e202201583.

[81]

ZhaoE W, JónssonE, JethwaR B, HeyD, LyuD, BrookfieldA, KlusenerP A, CollisonD, GreyC PJ. Am. Chem. Soc., 2021, 143: 1885.

[82]

XiangY, ZhengG, LiangZ, JinY, LiuX, ChenS, ZhouK, ZhuJ, LinM, HeHNat. Nanotech., 2020, 15: 883.

[83]

MashiachR, WeissmanH, AvramL, HoubenL, BrontveinO, LavieA, ArunachalamV, LeskesM, RybtchinskiB, Bar-ShirANat. Commun., 2021, 12: 229.

[84]

TangL, FengC, DengY, ZengG, WangJ, LiuY, FengH, WangJAppl. Catal. B: Environ., 2018, 230: 102.

[85]

FengC, TangL, DengY, WangJ, LiuY, OuyangX, YangH, YuJ, WangJAppl. Catal. B: Environ., 2021, 281: 119539.

[86]

FengC, LuoJ, ChenC, ZuoS W, RenY, WuZ-P, HuM, Ould-ChikhS, MartínezJ R, ZhangHEnergy Environ. Sci., 2024, 17: 1520.

[87]

FengC, TangL, DengY, ZengG, WangJ, LiuY, ChenZ, YuJ, WangJAppl. Catal. B: Environ., 2019, 256: 117827.

[88]

FengC, DengY, TangL, ZengG, WangJ, YuJ, LiuY, PengB, FengH, WangJAppl. Catal. B: Environ., 2018, 239: 525.

[89]

JiangY, LiS, WangS, ZhangY, LongC, XieJ, FanX, ZhaoW, XuP, FanYJ. Am. Chem. Soc., 2023, 145: 2698.

[90]

FengC, OuyangX, DengY, WangJ, TangLJ. Hazard. Mater., 2023, 441: 129845.

[91]

FengC, TangL, DengY, WangJ, LiuY, OuyangX, ChenZ, YangH, YuJ, WangJAppl. Catal. B: Environ., 2020, 276: 119167.

[92]

FengC, TangL, DengY, WangJ, TangW, LiuY, ChenZ, YuJ, WangJ, LiangQChem. Eng. J., 2020, 389: 124474.

[93]

ShojiS, PengX, YamaguchiA, WatanabeR, FukuharaC, ChoY, YamamotoT, MatsumuraS, YuM-W, IshiiSNat. Catal., 2020, 3: 148.

[94]

BergN, BergwinklS, NuernbergerP, HorinekD, GschwindR MJ. Am. Chem. Soc., 2021, 143: 724.

[95]

RothfelderR, StreitferdtV, LennertU, CammarataJ, ScottD J, ZeitlerK, GschwindR M, WolfRAngew. Chem. Int. Ed., 2021, 133: 24855.

[96]

SunL, ZhangZ, BianJ, BaiF, SuH, LiZ, XieJ, XuR, SunJ, BaiLAdv. Mater., 2023, 35: 2300064.

[97]

ZhaoY, YangC, ZhangS, SunG, ZhuB, WangL, ZhangJChin. J. Catal., 2024, 63: 258.

[98]

ChangK F, ReduzziM, WangH, PoullainS M, KobayashiY, BarreauL, PrendergastD, NeumarkD M, LeoneS RNat. Commun., 2020, 11: 4042.

[99]

ZhuY, KuoT-R, LiY-H, QiM-Y, ChenG, WangJ, XuY-J, ChenH MEnergy Environ. Sci., 2021, 14: 1928.

[100]

ParvatkarP T, KandambethS, ShaikhA C, NadinovI, YinJ, KaleV S, HealingG, EmwasA-H, ShekhahO, AlshareefH NJ. Am. Chem. Soc., 2023, 145: 5074.

[101]

Feng C., Alharbi J., Hu M., Zuo S., Luo J., Qahtani H. S. A., Rueping M., Huang K. W., Zhang H., Adv. Mater., 2025, 2406748.

[102]

TammingR R, LinC-Y, HodgkissJ M, YangS-D, ChenK, LuC-HSci. Rep., 2021, 11: 12847.

[103]

ZhangJ, ZhuB, ZhangL, YuJChem. Commun., 2023, 59: 688.

[104]

ChengC, ZhangJ, ZhuB, LiangG, ZhangL, YuJAngew. Chem. Int. Ed., 2023, 62: e202218688.

[105]

KoenderinkA F, TsukanovR, EnderleinJ, IzeddinI, KrachmalnicoffVNanophotonics, 2022, 11: 169.

[106]

WangX, LiuB, MaS, ZhangY, WangL, ZhuG, HuangW, WangSNat. Commun., 2024, 15: 2600.

[107]

UllahW, SlassiA, WangC, PaineauE, Ha-ThiM H, PinoT, HalimeZ, GayralA, ValletM, DegrouardJAdv. Energy Mater., 2024, 14: 2401547.

[108]

JinschekJChem. Commun., 2014, 50: 2696.

[109]

HansenT W, WagnerJ B, Dunin-BorkowskiR EMater. Sci. Technol., 2010, 26: 1338.

[110]

ZhangG, MengY, XieB, NiZ, LuH, XiaSAppl. Catal. B: Environ., 2021, 296: 120379.

[111]

ChenY, JiS, SunW, LeiY, WangQ, LiA, ChenW, ZhouG, ZhangZ, WangYAngew. Chem. Int. Ed., 2020, 132: 1311.

[112]

WengB, JiangY, LiaoH-G, RoeffaersM B, LaiF, HuangH, TangZNano Res., 2021, 14: 2805.

[113]

VadaiM, AngellD K, HayeeF, SytwuK, DionneJ ANat. Commun., 2018, 9: 4658.

[114]

YuS, JiangY, SunY, GaoF, ZouW, LiaoH, DongLAppl. Catal. B: Environ., 2021, 284: 119743.

[115]

WengS, ChenB, XieL, ZhengZ, LiuPJ. Mater. Chem. A, 2013, 1: 3068.

[116]

XiaB, HeB, ZhangJ, LiL, ZhangY, YuJ, RanJ, QiaoS ZAdv. Energy Mater., 2022, 12: 2201449.

[117]

LiuY, ZhangM, WangZ, HeJ, ZhangJ, YeS, WangX, LiD, YinH, ZhuQNat. Commun., 2022, 13: 4245.

[118]

WuH, IraniR, ZhangK, JingL, DaiH, ChungH Y, AbdiF F, NgY HACS Energy Lett., 2021, 6: 3400.

[119]

BenH, LiuY, LiuX, LiuX, LingC, LiangC, ZhangLAdv. Funct. Mater., 2021, 31: 2102315.

[120]

MaoJ, AnX, GuZ, ZhouJ, LiuH, QuJEnviron. Sci. Technol., 2020, 54: 10323.

[121]

ChenR, NiC, ZhuJ, FanF, LiCNat. Protoc., 2024, 19: 2250.

[122]

TangY, XuZ-F, SunY, WangC, GuoY, HaoW, TanX, YeJ, YuTEnergy Environ. Sci., 2024, 17: 7882.

[123]

LiF, YueX, LiaoY, QiaoL, LvK, XiangQNat. Commun., 2023, 14: 3901.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/