Rice Husk-derived Biomass Silicon for Single-phase White-light Inorganic Phosphor and WLEDs

Wenhang Guo , Liang Zeng , Xinyuan Zhang , Xiaoyu Cai , Tan Su , Zhongmin Su

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 557 -563.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 557 -563. DOI: 10.1007/s40242-025-4248-0
Article

Rice Husk-derived Biomass Silicon for Single-phase White-light Inorganic Phosphor and WLEDs

Author information +
History +
PDF

Abstract

A silicate inorganic phosphor matrix, CJU-1-Eu (K3EuSi6O15), based on rice husk-derived biomass silicon, was synthesized via a hydrothermal method. The material was doped with Tb3+ ions, and the effect of Tb3+ concentration was investigated, resulting in a series of tunable white-light inorganic phosphors (CJU-1-Eu:xTb3+) ranging from warm white to cool white. The CJU-1-Eu:0.04Tb3+ inorganic white-light phosphor was combined with a UV chip to produce the white-light-emitting diode (WLED) device. The device exhibited CIE coordinates of (0.332, 0.327) and the color rendering index (CRI) of 86.5 at 100 mA current. This white-light phosphor achieves both the recycling and high-value utilization of rice husk ash.

Keywords

Rice husk-derived biomass silicon / Photoluminescence / White-light-emitting phosphor / Inorganic white-light-emitting diode (WLED) / Engineering / Materials Engineering

Cite this article

Download citation ▾
Wenhang Guo, Liang Zeng, Xinyuan Zhang, Xiaoyu Cai, Tan Su, Zhongmin Su. Rice Husk-derived Biomass Silicon for Single-phase White-light Inorganic Phosphor and WLEDs. Chemical Research in Chinese Universities, 2025, 41(3): 557-563 DOI:10.1007/s40242-025-4248-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MasoumehK, NaserF, MartinI P C, AsadollahARice Science, 2024, 31: 14.

[2]

HeW X, ZhangZ L, JiJ BChemical Industry and Engineering Progress, 2016, 35: 1366

[3]

ZhangW L, XuJ H, HouD X, YinJ, LiuD B, HeY P, LinH BJ. Colloid and Interface Science, 2018, 530: 338.

[4]

ZhangW L, LinN, LiuD B, XuJ H, ShaJ X, YinJ, TanX B, YangH P, LuH Y, LinH BEnergy, 2017, 138: 618.

[5]

YuK F, WangY, WangX F, LiuW P, LiangJ C, LiangCMater. Lett., 2019, 253: 405.

[6]

SunX F, LiuW B, XuD, ShiL, QiP G, XiongY Q, ZhangW JElectrochim. Acta, 2022, 403: 139688.

[7]

LiuP, WuQ M, ChenZ H, XiaoF SChem. Res. Chinese Universities, 2024, 40: 646.

[8]

KimH J, ChoiJ H, ChoiJ WNano Convergence, 2017, 4: 1.

[9]

TalekarG V, MutnuriSFrontiers in Energy Research, 2020, 8: 20.

[10]

PengY, LanL, MuJ Y, HouS, ChengL JJ. Biomed. Engineering, 2023, 40: 805

[11]

DingY F, SharminN, SabatiniD A, ButlerE CResources, Conservation & Recycling, 2023, 198: 107127.

[12]

GebretatiosA G, PillantakathA R K K, WitoonT, LimJ W, BanatF, ChengC KChemosphere, 2023, 310: 136843.

[13]

TaiyeM A, HafidaW, KongF, ZhouC SEnvironmental Progress & Sustainable Energy, 2024, 6: 43

[14]

StevenS, RestiawatyE, BindarYRenewable and Sustainable Energy Reviews, 2021, 149: 111329.

[15]

WangS Y, LiuX X, ZhouPAdv. Mater., 2022, 34: 2106886.

[16]

ZhuoM P, SuY, QuY K, ChenS, HeG P, YuanY, LiuH, TaoY C, WangX D, LiaoL SAdv. Mater., 2021, 33: 2102719.

[17]

ZhangH J, ZhangHLight: Science & Applications, 2022, 11: 260.

[18]

ChunF J, ZhangB B, GaoY Y, WeiX H, ZhangQ, ZhengW L, ZhouJ K, GuoY, ZhangX, XingZ F, YuX, WangFNature Photonics, 2024, 18: 856.

[19]

ZhangS, YangX X, XiaoJ Q, LiX, PengQ P, LuoS Y, BaH Q, ZhangY, XuX HAdv. Funct. Mater., 2024, 44: 34

[20]

ChenP, LiZ X, LiD Y, PiL J, LiuX T, LuoJ H, ZhouX, ZhaiT YSmall, 2021, 17: 2100137.

[21]

ChenJ W, MukherjeeS, LiW J, ZengH B, FischerR ANature Rev. Mater., 2022, 7: 677.

[22]

PangD, WengW, ZhouJ, GuD, XiaoWJ. Energy Chemistry, 2021, 55: 102.

[23]

XiangH Y, WangR, ChenJ W, LiF S, ZengH BLight: Science & Applications, 2021, 10: 206.

[24]

LiuX, QianX L, ZhengP, ChenX P, FengY G, ShiY, ZouJ, XieR J, LiJJ. Adv. Ceram., 2021, 10: 729.

[25]

PimputkarS, SpeckJ S, DenBaarsS P, NakamuraSNature Photonics, 2009, 3: 180.

[26]

MaZ Z, ShiZ F, YangD W, LiY W, ZhangF, WangL T, ChenX, WuD, TianY T, ZhangY, ZhangL J, LiX J, ShanC XAdvan. Mater., 2021, 33: 2001367.

[27]

TurkdoganS, FanF, NingC ZAdvan. Funct. Mater., 2016, 26: 8521.

[28]

HuangS, ShangM M, YanY, WangY N, DangP P, LinJLaser & Photonics Reviews, 2022, 16: 2200473.

[29]

LuX, LiuH T, YangX Y, TianY G, GaoX L, HanL Y, XuQCeramics International, 2017, 43: 11686.

[30]

WangH H, MaoF F, LiuY J, JiangX P, MaB L, WeiL S, WuF, LiL KMaterials Research Bulletin, 2020, 125: 110808.

[31]

MehareM D, MehareC M, SwartH C, DhobleS JProgress in Materials Science, 2023, 133: 101067.

[32]

LiuS F, LiL Y, QinX H, DuR K, SunY F, XieS X, WangJ Q, MolokeevM S, XiS B, Bünzli Jean-ClaudeG, ZhouL, WuM MAdvan. Mater., 2024, 36: 2406164.

[33]

ZhangH Z, LiH, LiJ P, LiuC L, JiangH M, LiuY X, WangR, XieJ Y, HuW B, ZhuJAdvan. Mater., 2024, 36: 2412099.

[34]

Yang Y. Z., Zhang P., Miao X., Lin Z. G., Li S. X., Liu W. S., Laser Photonics Reviews, 2024, 2400982.

[35]

LiM M, YangY G, KuangZ Y, HaoC J, WangS X, LuF Y, LiuZ R, LiuJ L, ZengL J, CaiY X, MaoY L, GuoJ S, TianH, XingG C, CaoY, MaC, WangN N, PengQ M, ZhuL, HuangW, WangJ PNature, 2024, 630: 631.

[36]

GuptaS K, KadamR M, PujariP KCoord. Chem. Rev., 2020, 420: 213405.

[37]

WangG M, ValldorM, DornK V, Wilk-KozubekM, SmetanaV, MudringAVChem. Mater., 2019, 31: 7329.

[38]

GabelnickD S, ReedyT G, ChasanovG MJ. Chem. Phys., 1974, 60: 1167.

[39]

LesterAJ. Phys. Chem., 1969, 73: 3922.

[40]

LiZ J, WangX P, YuH J, QiuC C, ZhangY Y, LiJ, LvX S, LiuB, ShiQ, YangY GCeramics International, 2023, 49: 2894.

[41]

Soriano-RomeroO, HuertaE F, Meza-RochaA N, CaldiñoUCeramics International, 2023, 49: 36353.

[42]

ZhaoY X, ZhengZ B, LiZ L, ShiZ, SongY H, ZouB, ZouH FInorgan. Chem., 2024, 63: 4288.

[43]

YuanW H, PangR, WangS W, TanT, LiC Y, WangC W, ZhangH JLight: Science & Applications, 2022, 11: 184.

[44]

DexterD L, SchulmanJ HJ. Chem. Phys., 1954, 22: 1063.

[45]

BlasseGPhys. Lett. A, 1968, 28: 444.

[46]

LeiY X, DaiW B, GuanJ X, GuoS, RenF, ZhouY D, ShiJ B, TongB, CaiZ X, ZhengJ R, DongY PAngew. Chem. Int. Ed., 2020, 59: 16054.

[47]

AnZ F, ZhengC, TaoY, ChenR F, ShiH F, ChenT, WangZ X, LiH H, DengR R, LiuX G, HuangWNat. Mater., 2015, 14: 685.

[48]

ZhangY F, GaoL, ZhengX, WangZ H, YangC L, TangH L, QuL J, LiY B, ZhaoY LNat. Commun., 2021, 12: 2297.

[49]

YuM, ZhangW T, QinS Y, LiJ F, QiuK HJ. Am. Ceram. Soc., 2018, 101: 4582.

[50]

ZhangD, ZhengB F, ZhengZ B, LiL, YangQ, SongY H, ZouB, ZouH FChem. Engineering J., 2022, 431: 133805.

[51]

SunW Z, FanL Y, ZhangX X, WeiD H, JiaoM M, XuW L, ZhangH WJ. Am. Ceram. Soc., 2023, 106: 2443.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/