Enhancing Structural Stability and Electrochemical Performance of Ultra-high Ni-rich Co-free Cathode via MgHPO4 Dual-functional Modification

Huahui Lin , Yu Shen , Li Wei , Ran Song , Fan Wu , Peng Wei , Zhenzhong Yang , Yurong Ren , Ke Qu , Zhengping Ding

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 333 -342.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 333 -342. DOI: 10.1007/s40242-025-4246-2
Article

Enhancing Structural Stability and Electrochemical Performance of Ultra-high Ni-rich Co-free Cathode via MgHPO4 Dual-functional Modification

Author information +
History +
PDF

Abstract

Ultra-high nickel layered cathodes (Ni⩾95%) have emerged as prospective candidates for next-generation lithium-ion batteries (LIBs) due to their exceptional specific capacity and cost-effectiveness. However, the commercial application of these cathodes has been hindered by several challenges, including structural instability during cycling, high sensitivity to air, and slow Li+ migration. In this research, a one-step modification strategy was developed to simultaneously achieve Mg doping and Li3PO4 layer coating for the ultra-high nickel cathodes. Characterization results demonstrated that Mg doping not only alleviates lattice strain changes during the H2–H3 phase transition (H2: the second hexagonal phase; H3: the third hexagonal phase) but also serves as a structural anchor, preventing Ni2+ migration and occupation within the Li layer. The Li3PO4 surface coating layer acts as an electrochemical shield, protecting against interfacial side reactions and enhancing the Li+ diffusion rate. As a result, the LiNi0.95Mn0.05O2 cathode, with both internal and external modifications, demonstrates significant improvement in cycling stability (85.7% capacity retention after 100 cycles) and Li+ transport performance (130.6 mA·h·g−1 at 10 C, 1 C=189.6 mA·h·g−1), providing a solid foundation for the further development and application of ultra-high nickel cathodes.

Keywords

Lithium-ion battery / Ni-rich Co-free cathode / MgHPO4 / Surface modification / Chemical Sciences / Physical Chemistry (incl. Structural) / Engineering / Materials Engineering

Cite this article

Download citation ▾
Huahui Lin, Yu Shen, Li Wei, Ran Song, Fan Wu, Peng Wei, Zhenzhong Yang, Yurong Ren, Ke Qu, Zhengping Ding. Enhancing Structural Stability and Electrochemical Performance of Ultra-high Ni-rich Co-free Cathode via MgHPO4 Dual-functional Modification. Chemical Research in Chinese Universities, 2025, 41(2): 333-342 DOI:10.1007/s40242-025-4246-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenK, BaraiP, KahveciogluO, WuL, PupekK Z, GeM, MaL, EhrlichS N, ZhongH, ZhuY, SrinivasanV, BaiJ, WangFNat. Commun., 2024, 15: 430

[2]

NiL, GuoR, FangS, ChenJ, GaoJ, MeiY, ZhangS, DengW, ZouG, HouH, JiXeScience, 2022, 2: 116

[3]

QiaoL, YouQ, WuX, MinH, LiuX, YangHACS Appl. Mater. Interfaces, 2024, 16: 4307

[4]

HuangH, ZhuH, GaoJ, WangJ, ShaoM, ZhouWAngew. Chem. Int. Ed., 2023, 63: e20214457

[5]

SeenivasanM, YangC C, WuS-H, ChangJ-K, JoseRJ. Colloid Interface Sci., 2024, 661: 1070

[6]

WangX, ZhangB, XiaoZ, MingL, LiM, ChengL, OuXChin. Chem. Lett., 2023, 34: 107772

[7]

LiangL, M. S., SunZ, WangL, HouL, LiuH, ZhangQ, YuanCScience, 2024, 10: 4472

[8]

LiuT, FanK, ChenC, DongM, ZhuY, ChenG, LiJ, LinZ, LiL, ZhuY, LiH, HuangHJ. Mater. Chem. A, 2024, 12: 12702

[9]

LiuL, ZhaoY, ShanL, JiangG, ZhangY, MengQ, DongPElectrochimica Acta, 2024, 477: 143804

[10]

Lee S., Li C., Manthiram A., Adv. Energy Mater., 2024, 2303490.

[11]

WangW, ZhouY, ZhangB, HuangW, ChengL, WangJ, HeX, YuL, XiaoZ, WenJ, LiuT, AmineK, OuXACS Nano, 2024, 18: 8002

[12]

ZhangQ, WangY, DengQ, ChuY, DongP, ChenC, WangZ, XiaZ, YangCAngew. Chem. Int. Ed., 2024, 63: e202401716

[13]

Lv Y., Cheng X., Huang B., J. Power Sources, 2020, 227718.

[14]

YanJ, YangZ, KanH, ZhaY, LiC, MengQ, DongP, ZhangYCeram Int., 2024, 50: 24872

[15]

SunY, HuangW, ZhaoG, LiuQ, DuanL, WangS, AnQ, WangH, YangY, ZhangC, GuoHACS Energy Lett., 2023, 8: 1629

[16]

TianR, YinS, ZhangH, SongD, MaY, ZhangLDalton Trans., 2023, 52: 11716

[17]

HuC, MaJ, LiA, LiC, WangC, ChenZ, YangZ, SuJ, ZhangWEnergy Fuels, 2023, 37: 8005

[18]

LiuJ-K, YangX-R, WangC-W, YinZ-W, HuY-Y, DengL, WangZ, ZhouY, LiJ-TJ. Energy Chem., 2024, 98: 67

[19]

WeigelT, SchipperF, EricksonE M, SusaiF A, MarkovskyB, AurbachDACS Energy Lett., 2019, 4: 508

[20]

YanP, ZhengJ, LiuJ, WangB, ChengX, ZhangY, SunX, WangC, ZhangJ-GNat. Energy, 2018, 3: 600

[21]

LiZ, YiH, LiX, GaoP, ZhuYACS Appl. Mater. Interfaces, 2024, 16: 28537

[22]

JungC H, KimD H, EumD, KimK H, ChoiJ, LeeJ, KimH H, KangK, HongS HAdv. Funct. Mater., 2021, 31: 2010095

[23]

SeongW, ManthiramM AACS Appl. Mater. Interfaces, 2020, 12: 43653

[24]

HuangW, ZhaoQ, ZhangM, XuS, XueH, ZhuC, FangJ, ZhaoW, RenG, QinR, ZhaoQ, ChenH, PanFAdv. Energy Mater., 2022, 12: 2200813

[25]

HwangD-Y, KimH-S, LeeS-HJ. Mater. Chem. A, 2022, 10: 16555

[26]

Tan Z., Li Y., Lei C., Li Y., Xi X., Jiang S., Wu F., He Z., Small, 2023, e2305618.

[27]

LuoZ, DingC, WangW, HuG, DuK, CaoY, PengZAppl. Surface Sci., 2024, 665: 160238

[28]

ZhangW, ChengF, WangM, XuJ, LiY, SunS, XuY, WangL, XuL, LiQ, FangC, LuY, HanJAdv. Funct. Mater., 2023, 33: 2304008

[29]

WuF, MaH, YeX, WuS, ZhangH, LiangK, LiJ, RenY, WeiPJ. Colloid Interface Sci., 2025, 679: 132

[30]

HanD, ChenJ, LiW, XieL, YanZ, TangZ, HaoW W, PengJ, DolotkoO, ZhaoY, HuaW, WuY, TangWJ. Mater. Chem. A, 2024, 12: 13724

[31]

WangS, LiangK, ZhaoH, ZhouB, HeJ, WeiP, DingZ, LiJ, HuangX, RenYEnergy Stor. Mater., 2023, 63: 103027

[32]

SunY, WangC, HuangW, ZhaoG, DuanL, LiuQ, WangS, FraserA, GuoH, SunXAngew. Chem. Int. Ed., 2023, 62: e202300962

[33]

ZhangW, WangM, ChangM, ChengF, LiY, SunS, XuY, WangL, XuL, LiQ, FangC, LuY, HanJEnergy Stor. Mater., 2024, 70: 103446

[34]

LuY, ZhaoC-Z, HuangJ-Q, ZhangQJoule, 2022, 6: 1172

[35]

LiuY, LuY, ZhangZ, XuB, HeF, LiuY, ChenY, ZhangK, LiuFJ. Energy Chem., 2025, 101: 795

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/