Frontier Biological Electrodes for Cell Analysis

Yingying Huang , Bo Fang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 447 -463.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 447 -463. DOI: 10.1007/s40242-025-4243-5
Review

Frontier Biological Electrodes for Cell Analysis

Author information +
History +
PDF

Abstract

Bioelectrodes in cells can record and monitor monocellular or multicellular signals, contributing to early diagnosis, drug development and public health. To promote the cell analysis platform into integration, miniaturization and intellectualization, development of advanced bioelectrodes has attracted intense attention from both research and industrial communities. Here we present the research progress of bioelectrodes for cell analysis along four lines: materials, fabrications, principles and state-of-the-art applications. Covering from traditional noble metals to frontier conducting polymers, various conductive yet biocompatible materials have been used to develop bioelectrodes. Suitable materials are processed into micro/nano electrodes through electrochemical deposition, sol-gel processes, and self-assembly etc. The prepared bioelectrodes play roles in cellular analysis based on a biochemical process of direct electron transfer, mediator-assisted transfer or biocatalysis, which has been widely used in electrophysiological characterization, chemical analysis, metabolite detection and intercellular communication. To conclude this review, we summarize current challenges remained for cell electrodes in terms of foreign body response, biocompatibility, long-term stability, miniaturization, multifunctional integration, and intelligence, further suggesting possible solutions on performance optimization and material innovation. This review could provide guidance for understanding the working principles of bioelectrodes, designing a feasible cellular analysis platform, and building advanced cell analysis systems.

Keywords

Bioelectrode / Cell analysis / Conducting polymer / Electrophysiology / Microelectrode array / Biomedical application / Chemical Sciences / Macromolecular and Materials Chemistry / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Yingying Huang, Bo Fang. Frontier Biological Electrodes for Cell Analysis. Chemical Research in Chinese Universities, 2025, 41(3): 447-463 DOI:10.1007/s40242-025-4243-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DelaughterD MCurrent Protocols, 2018, 122: e55.

[2]

IravanianS, LangbergJ JHeart Rhythm, 2019, 16: 460.

[3]

EricksonJ R, MairF, BugosG, MartinJ, TyznikA J, NakamotoM, MortimerS, PrlicMSTAR Protoc., 2020, 1: 100092.

[4]

MacoskoE, BasuA, SatijaR, NemeshJ, ShekharK, GoldmanM, TiroshI, BialasA, KamitakiN, MartersteckE, TrombettaJ, WeitzD, SanesJ, ShalekA, RegevA, MccarrollSCell, 2015, 161: 1202.

[5]

Huang J., Zhu Z., Ji D., Sun R., Yang Y., Liu L., Shao Y., Chen Y., Li L., Sun B., Front. Immunol., 2022, 12.

[6]

MontaldoE, LusitoE, BianchessiV, CaronniN, ScalaS, Basso-RicciL, CantaffaC, MasserdottiA, BarilaroM, BarresiS, GenuaM, VittoriaF M, BarbieraG, LazarevicD, MessinaC, XueE, MarktelS, TresoldiC, MilaniR, RonchiP, GattilloS, SantoleriL, Di MiccoR, DitadiA, BelfioriG, AleottiF, NaldiniM M, GentnerB, GardimanE, TamassiaN, CassatellaM A, HidalgoA, KwokI, NgL G, CrippaS, FalconiM, PettinellaF, ScapiniP, NaldiniL, CiceriF, AiutiA, OstuniRNat. Immunol., 2022, 23: 1470.

[7]

GuoC, LiuQ, ZongD, ZhangW, ZuoZ, YuQ, ShaQ, ZhuL, GaoX, FangJ, TaoJ, WuQ, LiX, QuKCell Rep., 2022, 41: 111606.

[8]

GuiQ, LawsonT, ShanS, YanL, LiuYSensors, 2017, 17: 1623.

[9]

YuanT K, YinR L, LiC W, FanZ, PanL JChem. Eng. J., 2024, 498: 155590.

[10]

XuS M, ChenG R, ScottK, ManshaiiF, ChenJMatter, 2024, 7: 2795.

[11]

AmirghasemiF, Al-ShamiA, UshijimaK, MousaviM P SACS Mater. Lett., 2024, 6: 4158.

[12]

Ganaie M. M., Kumar A., Shringi A. K., Sahu S., Saliba M., Kumar M., Adv. Funct. Mater., 2024.

[13]

LiL, JiangC, DuanW, WangZ, ZhangF, HeC, LongT, LiLMicrosyst. Nanoeng., 2022, 8: 96.

[14]

CassarI R, YuC, SambangiJ, LeeC D, WhalenJ J, PetrossiansA, GrillW MBiomater., 2019, 205: 120.

[15]

FanelliA, FerlautoL, ZollingerE G, BrinaO, ReymondP, MachiP, GhezziDAdv. Mater. Technol., 2022, 7: 2100176.

[16]

ChungT, WangJ Q, WangJ, CaoB, LiY, PangS WJ. Neural Eng., 2015, 12: 056018.

[17]

RobbinsE M, WongB, PwintM Y, SalavatianS, MahajanA, CuiX TACS Appl. Mater. Interfaces, 2024, 16: 40570.

[18]

TangZ G, SunW, TaoC, PengT, LiH, ChenK, LiJ L, ZhaoZ H, LiZ L, HongX HSSRN Electronic Journal, 2024, 129: 110041

[19]

LuL, FuX, LiewY, ZhangY, ZhaoS, XuZ, ZhaoJ, LiD, LiQ, StanleyG B, DuanXNano Lett., 2019, 19: 1577.

[20]

Qian L. L., Jin F., Li T., Wei Z. D., Ma X. Y., Zheng W. Y., Javanmardi N., Wang Z., Ma J., Lai C. T., Dong W., Wang T., Feng Z. Q., Adv. Mater., 2024, 2406636.

[21]

WangH, RenZ JBiotechnol. Adv., 2013, 31: 1796.

[22]

RabaeyK, RozendalR ANat. Rev. Microbiol., 2010, 8: 706.

[23]

LeeJ M, LinD C, HongG S, KimK H, ParkH G, LieberC MNano Lett., 2022, 22: 4552.

[24]

YangS J, LiuC Q, TangL X, ShangJ, ZhangJ R, JiangX YACS Appl. Mater. Interfaces, 2024, 16: 43880.

[25]

Chen K. Y., Wu B. C., Krahe D., Vazquez A., Siegenthaler J. R., Rechenberg R., Li W., Cui X. T., Kozai T. D. Y., Adv. Funct. Mater., 2024

[26]

ThomasC A Jr, SpringerP A, LoebG E, Berwald-NetterY, OkunL MExp. Cell Res., 1972, 74: 61.

[27]

ClarkL C Jr, LyonsCAnn. N.Y. Acad. Sci., 1962, 102: 29.

[28]

UpdikeS J, HicksG PNature, 1967, 214: 986.

[29]

XieX, CriddleC, CuiYEnergy Environ. Sci., 2015, 8: 3418.

[30]

McadamsEEncyclopedia of Medical Devices and Instrumentation: Bioelectrodes, 2006HobokenWiley

[31]

SinghA K, MittalS, DasM, SahariaA, TiwariMAlexandria Eng. J., 2023, 67: 673.

[32]

WuR, SongH, WangY, WangL, ZhuZChin. J. Chem. Eng., 2020, 28: 2037.

[33]

FangY, MengL, ProminskiA, SchaumannE N, SeebaldM, TianBChem. Soc. Rev., 2020, 49: 7978.

[34]

HuM, LiangC, WangDBiomater. Sci., 2024, 12: 270.

[35]

DongJ, WangD, PengY, ZhangC, LaiF, HeG, MaP, DongW, HuangY, ParkinI, LiuTSSRN Electronic Journal, 2022, 97: 107160

[36]

VenugopalanR, IdekerRBiomaterials Science Bioelectrodes, 2013San DiegoElsevier957.

[37]

ZhangS, JiangJ, WangH, LiF, HuaT, WangWJ. CO2 Util., 2021, 51: 101640.

[38]

ZhouX, KatebP, FanJ, KimJ, LodygenskyG A, AmilhonB, PasiniD, CicoiraFJ. Mater. Chem. C, 2024, 12: 5708.

[39]

WillnerI, KatzEBioelectronics: From Theory to Applications, 2005WeinheimWiley.

[40]

GoodingJ JElectroanalysis, 2002, 14: 1149.

[41]

MestreA L G, CerquidoM, InácioP M C, AsgarifarS, LourençoA S, CristianoM L S, AguiarP, MedeirosM C R, AraújoI M, VenturaJ, GomesH LSci. Rep., 2017, 7: 14284.

[42]

BrownM A, ZappitelliK M, SinghL, YuanR C, BemroseM, BrogdenV, MillerD J, SmearM C, CoganS F, GardnerT JNat. Commun., 2023, 14: 3610.

[43]

KhanM A R, Al MamunM S, HabibM A, IslamA B M N, MahiuddinM, KarimK M R, NaimeJ, SahaP, DeyS K, AraM HResults Chem., 2022, 4: 100478.

[44]

WangJElectroanalysis, 2005, 17: 7.

[45]

FriteaL, BanicaF, CosteaT O, MoldovanL, DobjanschiL, MuresanM, CavaluSMaterials, 2021, 14: 6319.

[46]

KatzE, WillnerIChemPhysChem, 2004, 5: 1084.

[47]

FangB, BodepudiS C, TianF, LiuX, ChangD, DuS, LvJ, ZhongJ, ZhuH, HuH, XuY, XuZ, GaoW, GaoCNat. Commun., 2020, 11: 6368.

[48]

FangB, ChangD, XuZ, GaoCAdv. Mater., 2020, 32: 1902664.

[49]

MaoK, ZhangH, PanY, ZhangK, CaoH, LiX, YangZTrends Anal. Chem., 2020, 130: 115975.

[50]

Mazloum-ArdakaniM, Sheikh-MohseniM ACarbon Nanotubes in Electrochemical Sensors, 2011RijekaInTech.

[51]

FangB, XiaoY, XuZ, ChangD, WangB, GaoW, GaoCMater. Horiz., 2019, 6: 1207.

[52]

LiuJ, ChakrabortyS, HosseinzadehP, YuY, TianS, PetrikI, BhagiA, LuYChem. Rev., 2014, 114: 4366.

[53]

ArmstrongFScience, 2013, 339: 658.

[54]

MckoneJ R, MarinescuS C, BrunschwigB S, WinklerJ R, GrayH BChem. Sci., 2014, 5: 865.

[55]

XiaoX, XiaH-Q, WuR, BaiL, YanL, MagnerE, CosnierS, LojouE, ZhuZ, LiuAChem. Rev., 2019, 119: 9509.

[56]

YachandraV K, SauerK, KleinM PChem. Rev., 1996, 96: 2927.

[57]

JiZ, FengY, WangP, HuangYPolym. Int., 2020, 70: 43

[58]

ZhangY, RutledgeGMacromolecules, 2012, 45: 4238.

[59]

QuJ, OuyangL, KuoC-C, MartinD CActa Biomater., 2016, 31: 114.

[60]

LeeJ H, JeongY R, LeeG, JinS W, LeeY H, HongS Y, ParkH, KimJ W, LeeS-S, HaJ SACS Appl. Mater. Interfaces, 2018, 10: 28027.

[61]

ChenR, XuX, YuD, XiaoC, LiuM, HuangJ, MaoT, ZhengC, WangZ, WuXJ. Mater. Chem. C, 2018, 6: 11193.

[62]

ShinS, BaeH, ChaJ, MunJ, ChenY-C, TekinH, ShinH, FarshchiS, DokmeciM, TangX, KhademhosseiniAACS Nano, 2011, 6: 362.

[63]

HsiaoL-Y, JingL, LiK, YangH, LiY, ChenP-YCarbon, 2020, 161: 784.

[64]

DengJ, YukH, WuJ, VarelaC E, ChenX, RocheE T, GuoC F, ZhaoXNat. Mater., 2021, 20: 229.

[65]

LiJ, CaoJ, LuB, GuGNat. Rev. Mater., 2023, 8: 604.

[66]

JiangY, ZhangZ, WangY-X, LiD, CoenC-T, HwaunE, ChenG, WuH-C, ZhongD, NiuS, WangW, SaberiA, LaiJ-C, WuY, WangY, TrotsyukA A, LohK Y, ShihC-C, XuW, LiangK, ZhangK, BaiY, GurusankarG, HuW, JiaW, ChengZ, DauskardtR H, GurtnerG C, TokJ B-H, DeisserothK, SolteszI, BaoZScience, 2022, 375: 1411.

[67]

ZengQ, XingC, XuZ, LiuQ, YangL, YangH, ZhangY, PengZAdv. Funct. Mater., 2024, 34: 2312770.

[68]

ZhaoY, ZhangS, YuT, ZhangY, YeG, CuiH, HeC, JiangW, ZhaiY, LuC, GuX, LiuNNat. Commun., 2021, 12: 4880.

[69]

ZhengY-Q, LiuY, ZhongD, NikzadS, LiuS, YuZ, LiuD, WuH-C, ZhuC, LiJ, TranH, TokJ B-H, BaoZScience, 2021, 373: 88.

[70]

KatoK, LeeS, NagataFJ. Asian Ceram. Soc., 2020, 8: 396.

[71]

YukH, LuB, LinS, QuK, XuJ, LuoJ, ZhaoXNat. Commun., 2020, 11: 1604.

[72]

ZhaiX-J, LuoM-Y, LuoX-M, DongX-Y, SiY, ZhangC, HanZ, HanR, ZangS-Q, MakT C WNat. Commun., 2024, 15: 9155.

[73]

LalaouiN, Rousselot-PailleyP, RobertV, MekmoucheY, VillalongaR, HolzingerM, CosnierS, TronT, Le GoffAACS Catal., 2016, 6: 1894.

[74]

ZhaiX, LiuX, DongH, LinM, ZhengX, YangQBioprocess Biosyst. Eng., 2024, 47: 159.

[75]

MierA A, Olvera-VargasH, Mejía-LópezM, LongoriaA, VereaL, SebastianP J, AriasD MChemosphere, 2021, 283: 131138.

[76]

ZengQ, XiaK, SunB, YinY, WuT, HumayunM SElectrochim. Acta, 2017, 237: 152.

[77]

LiuH, TianG, ZhaoQ, ChenJ, LiuY, LiangC, QiDAdv. Fiber Mater., 2024, 7: 266.

[78]

LeeS, HoD H, JekalJ, ChoS Y, ChoiY J, OhS, ChoiY Y, LeeT, JangK-I, ChoJ HNat. Commun., 2024, 15: 5974.

[79]

SalahinejadE, HadianfardM J, MacdonaldD D, SharifiAslS, MozafariM, WalkerK J, RadA T, MadihallyS V, VashaeeD, TayebiLJ. Biomed. Nanotechnol., 2013, 9: 1327.

[80]

YoonT, ParkW, KimY, NaSAppl. Surf. Sci., 2023, 608: 155124.

[81]

JiB, WangM, GeC, XieZ, GuoZ, HongW, GuX, WangL, YiZ, JiangC, YangB, WangX, LiX, LiC, LiuJBiosens. Bioelectron., 2019, 135: 181.

[82]

ZhaoS, WangX, WangQ, SumpraditT, KhanA, ZhouJ, SalamaE-S, LiX, QuJEcotoxicol. Environ. Saf., 2023, 267: 115643.

[83]

YamashitaY, LeeI, LoewN, SodeKCurr. Opin. Electrochem., 2018, 12: 92.

[84]

SongY, WangCMicrosyst. Nanoeng., 2019, 5: 46.

[85]

IzzoM, OsellaS, JacquetM, KiliszekM, HarputluE, StarkowskaA, ŁasicaA, UnluC G, UśpieńskiT, NiewiadomskiP, BartosikD, TrzaskowskiB, OcakogluK, KargulJBioelectrochemistry, 2021, 140: 107818.

[86]

ChenH, DongF, MinteerS DNature Catalysis, 2020, 3: 225.

[87]

WeliwatteN S, GrattieriM, MinteerS DPhotochem. Photobiol. Sci., 2021, 20: 1333.

[88]

KurimotoA, NasseriS A, HuntC, RooneyM, DvorakD J, LesageN E, JansoniusR P, WithersS G, BerlinguetteC PNat. Commun., 2023, 14: 1814.

[89]

KalitaN, GogoiS, MinteerS D, GoswamiPACS Meas. Sci. Au, 2023, 3: 404.

[90]

SiritanaratkulB, MegarityC F, HeroldR A, ArmstrongF ACommun. Chem., 2024, 7: 132.

[91]

SongD, LiuNNat. Electron., 2024, 7: 432.

[92]

HeumosL, SchaarA C, LanceC, LitinetskayaA, DrostF, ZappiaL, LückenM D, StroblD C, HenaoJ, CurionF, AlieeH, AnsariM, Badia-I-MompelP, BüttnerM, DannE, DimitrovD, DonyL, FrishbergA, HeD, Hediyeh-ZadehS, HetzelL, IbarraI L, JonesM G, LotfollahiM, MartensL D, MüllerC L, NitzanM, OstnerJ, PallaG, PatroR, PiranZ, Ramírez-SuásteguiC, Saez-RodriguezJ, SarkarH, SchubertB, SikkemaL, SrivastavaA, TanevskiJ, VirshupI, WeilerP, SchillerH B, TheisF JNat. Rev. Genet., 2023, 24: 550.

[93]

AscoliG A, Alonso-NanclaresL, AndersonS A, BarrionuevoG, Benavides-PiccioneR, BurkhalterA, BuzsákiG, CauliB, DefelipeJ, FairénA, FeldmeyerD, FishellG, FregnacY, FreundT F, GardnerD, GardnerE P, GoldbergJ H, HelmstaedterM, HestrinS, KarubeF, KisvárdayZ F, LambolezB, LewisD A, MarinO, MarkramH, MuñozA, PackerA, PetersenC C H, RocklandK S, RossierJ, RudyB, SomogyiP, StaigerJ F, TamasG, ThomsonA M, Toledo-RodriguezM, WangY, WestD C, YusteRNat. Rev. Neurosci., 2008, 9: 557.

[94]

RebuffetL, MelsenJ E, EscalièreB, Basurto-LozadaD, BhandoolaA, BjörkströmN K, BrycesonY T, CastriconiR, CichockiF, ColonnaM, DavisD M, DiefenbachA, DingY, HaniffaM, HorowitzA, LanierL L, MalmbergK-J, MillerJ S, MorettaL, Narni-MancinelliE, O’neillL A J, RomagnaniC, RyanD G, SivoriS, SunD, VagneC, VivierENat. Immunol., 2024, 25: 1474.

[95]

CaseyP JScience, 1995, 268: 221.

[96]

YosefN, RegevAScience, 2016, 354: 64.

[97]

LandryC R, YipM C, ZhouY, NiuW, WangY, YangB, WenZ, ForestC RJ. Neurosci. Methods, 2023, 394: 109898.

[98]

LiuY-L, ZhaoY-X, LiY-B, YeZ-Y, ZhangJ-J, ZhouY, GaoT-Y, LiFJ. Anal. Test, 2022, 6: 178.

[99]

Masvidal-CodinaE, IllaX, DasilvaM, CaliaA B, DragojevićT, Vidal-RosasE E, Prats-AlfonsoE, Martínez-AguilarJ, De La CruzJ M, Garcia-CortadellaR, GodignonP, RiusG, CamassaA, Del CorroE, BousquetJ, HébertC, DurduranT, VillaR, Sanchez-VivesM V, GarridoJ A, Guimerà-BrunetANat. Mater., 2019, 18: 280.

[100]

LeeM, LeeS, KimJ, LimJ, LeeJ, MasriS, BaoS, YangS, AhnJ-H, YangSNPG Asia Mater., 2021, 13: 65.

[101]

ZhangJ, LiuX, XuW, LuoW, LiM, ChuF, XuL, CaoA, GuanJ, TangS, DuanXNano Lett., 2018, 18: 2903.

[102]

LeeJ, LeeK, KangK, AliA, KimD W, AhnH, KoG, ChoiM, TchoeY, ParkH Y, YiG-CNPG Asia Mater., 2024, 16: 13.

[103]

XuD, FangJ, ZhangM, XiaQ, LiH, HuNNano Lett., 2022, 22: 2479.

[104]

Xiao X., Xu D., Han H., Wang D.-C., Lei S.-N., Liu R., Hu N., Sessler J. L., Huang F., Adv. Funct. Mater., 2024, n/a, 2404634.

[105]

LiuY, McguireA F, LouH-Y, LiT L, TokJ B-H, CuiB, BaoZProc. Natl. Acad. Sci., 2018, 115: 11718.

[106]

MuguetI, MazizA, MathieuF, MazenqL, LarrieuGAdv. Mater., 2023, 35: 2302472.

[107]

BrayDNature, 1995, 376: 307.

[108]

HunterTCell, 2000, 100: 113.

[109]

JinekM, ChylinskiK, FonfaraI, HauerM, DoudnaJ A, CharpentierEScience, 2012, 337: 816.

[110]

TsienR YAnnu. Rev. Biochem., 1998, 67: 509.

[111]

FromherzPPhys. E: Low-Dimens. Syst. Nanostructures, 2003, 16: 24.

[112]

PatolskyF, ZhengG, HaydenO, LakadamyaliM, ZhuangX, LieberC MProc. Natl. Acad. Sci., 2004, 101: 14017.

[113]

RuffA, ConzueloF, SchuhmannWNat. Catal., 2020, 3: 214.

[114]

TurnerA, KarubeI, WilsonG SBiosensors: Fundamentals and Applications, 1987OxfordOxford University Press

[115]

NewmanJ D, TurnerA P FBiosens. Bioelectron., 2005, 20: 2435.

[116]

PeterssonB AAnal. Chim. Acta, 1988, 209: 239.

[117]

KumarA, HsuL H-H, KavanaghP, BarrièreF, LensP N L, LapinsonnièreL, LienhardV J H, SchröderU, JiangX, LeechDNat. Rev. Chem., 2017, 1: 0024.

[118]

LiT, YangY, QiH, CuiW, ZhangL, FuX, HeX, LiuM, LiP-F, YuTSignal Transduction Targeted Ther., 2023, 8: 36.

[119]

WilsonG S, GiffordRBiosens. Bioelectron., 2005, 20: 2388.

[120]

VianaD, WalstonS T, Masvidal-CodinaE, IllaX, Rodríguez-MeanaB, Del ValleJ, HaywardA, DoddA, LoretT, Prats-AlfonsoENat. Nanotechnol., 2024, 19: 514.

[121]

SunG, ZhangL, ZhangY, YangH, MaC, GeS, YanM, YuJ, SongXBiosens. Bioelectron., 2015, 71: 30.

[122]

LiuG, MaC, JinB-K, ChenZ, ZhuJ-JAnal. Chem., 2018, 90: 4801.

[123]

WangY, QuanJ, ZhangJ, HuangK, WangX, JiangHSens. Actuators B, 2022, 366: 132021.

[124]

LeeS, MinK, JungJ, YiJ, TaeG, LeeJ YChem. Eng. J., 2024, 494: 152861.

[125]

JainA, GoslingJ, LiuS, WangH, StoneE M, ChakrabortyS, JayaramanP-S, SmithS, AmabilinoD B, FromholdMNat. Nanotechnol., 2024, 19: 106.

[126]

KellD BCurr. Opin. Microbiol., 2004, 7: 296.

[127]

WangJChem. Rev., 2008, 108: 814.

[128]

LuB, DengY, PengY, HuangY, MaJ, LiGAnal. Chem., 2022, 94: 12822.

[129]

PengY, PanY, HanY, SunZ, JalalahM, Al-AssiriM S, HarrazF A, YangJ, LiGAnal. Chem., 2020, 92: 13478.

[130]

PremaratneG, NiroulaJ, MoultonJ T, KrishnanSACS Appl. Bio Mater., 2024, 7: 2197.

[131]

HsiaoY-S, QuiñonesE D, YenS-C, YuJ, FangJ-T, ChenP, JuangR-SACS Appl. Mater. Interfaces, 2023, 15: 21953.

[132]

WangJSmall, 2005, 1: 1036.

[133]

InoK, YaegakiR, HiramotoK, NashimotoY, ShikuHACS Sens., 2020, 5: 740.

[134]

YangX-Y, BaiY-Y, HuangfuY-Y, GuoW-J, YangY-J, PangD-W, ZhangZ-LAnal. Chem., 2021, 93: 1757.

[135]

WuY, Arroyo-CurrásNCurr. Opin. Electrochem., 2021, 27: 100695.

[136]

CosnierSAnal. Bioanal. Chem., 2003, 377: 507.

[137]

IsraelE, RamganeshS, AbiaA L K, ChikereC BJ. Mar. Sci. Eng., 2023, 11: 1586.

[138]

RaduV, FrielingsdorfS, EvansS D, LenzO, JeukenL J CJ. Am. Chem. Soc., 2014, 136: 8512.

[139]

LalaouiN, De PoulpiquetA, HaddadR, Le GoffA, HolzingerM, GounelS, MermouxM, InfossiP, ManoN, LojouE, CosnierSChem. Commun., 2015, 51: 7447.

[140]

GentilS, Che MansorS M, JametH, CosnierS, CavazzaC, Le GoffAACS Catal., 2018, 8: 3957.

[141]

SzczesnyJ, MarkovićN, ConzueloF, ZacariasS, PereiraI A C, LubitzW, PlumeréN, SchuhmannW, RuffANat. Commun., 2018, 9: 4715.

[142]

RuffA, JankeS, SzczesnyJ, AlsaoubS, RuffI, LubitzW, SchuhmannWACS Appl. Energy Mater., 2019, 2: 2921.

[143]

ManoNBioelectrochemistry, 2019, 128: 218.

[144]

DuZ J, KolarcikC L, KozaiT D Y, LuebbenS D, SappS A, ZhengX S, NabityJ A, CuiX TActa Biomater., 2017, 53: 46.

[145]

BerggrenG, AdamskaA, LambertzC, SimmonsT R, EsselbornJ, AttaM, GambarelliS, MouescaJ M, ReijerseE, LubitzW, HappeT, ArteroV, FontecaveMNature, 2013, 499: 66.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/