Recent Advances in Mass Spectrometry-based Separation of Native Proteins

Fanyu Jia , Ting Jiang , Wei Xu

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 211 -221.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 211 -221. DOI: 10.1007/s40242-025-4242-6
Review

Recent Advances in Mass Spectrometry-based Separation of Native Proteins

Author information +
History +
PDF

Abstract

Native proteins refer to proteins that exist in their natural state, have a correctly folded three-dimensional structure, and have biological functions. Characterization of protein higher-order structure and protein-protein interactions is crucial for a deeper understanding of protein structure and function, as well as drug development. Native mass spectrometry (nMS) can provide key information about the intact mass, subunit composition, stoichiometry, and post-translational modification sites of protein complexes or individual proteins. However, when directly analyzing complex mixtures, the resolution of nMS is reduced, and it becomes difficult to detect low-abundance proteins. Therefore, sample separation and purification play an important role in nMS studies of proteins. In this review, we describe the mainstream native separation methods coupled to mass spectrometry, including liquid chromatography and capillary electrophoresis, and discuss the challenges encountered when these technologies are combined with mass spectrometry and the latest advances in the characterization of native proteins. The article provides a comprehensive overview of non-denaturing separation methods, including practical application issues, such as buffer selection, flow rate control, and interface technology. At the same time, potential native separation technologies, such as gradient focusing and free-flow electrophoresis that have not been widely used in nMS are also introduced, providing new perspectives for high-resolution detection of complex samples and detection of low-abundance proteins.

Keywords

Native mass spectrometry / Protein separation / Liquid chromatography / Capillary electrophoresis / Protein structure / Protein-protein interaction / Free-flow electrophoresis / Chemical Sciences / Analytical Chemistry / Biological Sciences / Biochemistry and Cell Biology / Medical and Health Sciences / Medical Biochemistry and Metabolomics

Cite this article

Download citation ▾
Fanyu Jia, Ting Jiang, Wei Xu. Recent Advances in Mass Spectrometry-based Separation of Native Proteins. Chemical Research in Chinese Universities, 2025, 41(2): 211-221 DOI:10.1007/s40242-025-4242-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MoX, NiuQ, IvanovA A, TsangY H, TangC, ShuC, LiQ, QianK, WahafuA, DoyleS P, CickaD, YangX, FanD, ReynaM A, CooperL A D, MorenoC S, ZhouW, OwonikokoT K, LonialS, KhuriF R, DuY, RamalingamS S, MillsG B, FuHCell, 2022, 185: 1974.

[2]

Durmus TekirS, CakirT, UlgenKFront. Microbiol, 2012, 3: 46.

[3]

WuX, XuM, GengM, ChenS, LittleP J, XuS, WengJSig. Transduct Target Ther., 2023, 8: 1.

[4]

LinJ-C, LiuH-LCurr. Drug Discov. Technol., 2006, 3: 145.

[5]

LeneyA C, HeckA J RJ. Am. Soc. Mass Spectrom, 2017, 28: 5.

[6]

RogawskiR, SharonMChem. Rev., 2022, 122: 7386.

[7]

BennettJ L, NguyenG T H, DonaldW AChem. Rev., 2022, 122: 7327.

[8]

PeetzO, HellwigN, HenrichE, MezhyrovaJ, DoetschV, BernhardF, MorgnerNJ. Am. Soc. Mass Spectrom., 2019, 30: 181.

[9]

KonermannL, LiuZ, HaidarY, WillansM J, BainbridgeN AAnal. Chem., 2023, 95: 13957.

[10]

XueJ-Y, LiuZ-Y, WangF-JChinese Jounal of Chromatography, 2024, 42: 681.

[11]

LiuR, XiaS, LiHMass Spectrom. Rev., 2023, 42: 1876.

[12]

WalzthoeniT, LeitnerA, StengelF, AebersoldRCurrent Opinion in Structural Biology, 2013, 23: 252.

[13]

GosettiF, MazzuccoE, ZampieriD, GennaroM CJ. Chromatogr. A, 2010, 1217: 3929.

[14]

RaterinkR-J, LindenburgP W, VreekenR J, RamautarR, HankemeierTTrendsAnalyt. Chem., 2014, 61: 157

[15]

SchwenzerA-K, KruseL, JooßK, NeusüßCProteomics, 2024, 24: 2300135.

[16]

LiuS, LiZ, YuB, WangS, ShenY, CongHAdv. Colloid Interface Sci., 2020, 284: 102254.

[17]

HedgesJ B, VahidiS, YueX, KonermannLAnal. Chem., 2013, 85: 6469.

[18]

Van SchaickG, HaselbergR, SomsenG W, WuhrerM, Dominguez-VegaENat. Rev. Chem., 2022, 6: 215.

[19]

ShenX, LiangZ, XuT, YangZ, WangQ, ChenD, PhamL, DuW, SunLInternational Journal of Mass Spectrometry, 2021, 462: 116541.

[20]

HabergerM, HeidenreichA-K, HookM, FichtlJ, LangR, CymerF, AdibzadehM, KuhneF, WegeleH, ReuschD, BonningtonL, BulauPJ. Am. Soc. Mass Spectrom., 2021, 32: 2062.

[21]

FiorentinoF, RotiliD, MaiADrug Discov. Today, 2023, 28: 103548.

[22]

LindseyR K, RaffertyJ L, EggimannB L, SiepmannJ I, SchureM RJ. Chromatogr. A, 2013, 1287: 60.

[23]

TangD-Q, ZouL, YinX-X, OngC NMass Spectrom. Rev., 2016, 35: 574.

[24]

AroraS, SaxenaV, AyyarB VMethods, 2017, 116: 84.

[25]

NadaH, ChoiY, KimS, JeongK S, MeanwellN A, LeeKSig. Transduct Target Ther., 2024, 9: 1.

[26]

FeketeS, BeckA, VeutheyJ-L, GuillarmeDJ. Pharm. Biomed. Anal., 2014, 101: 161.

[27]

VentouriI K, MalheiroD B A, VoetenR L C, KokS, HoningM, SomsenG W, HaselbergRAnal. Chem., 2020, 92: 4292.

[28]

FeketeS, KizekaiL, SarisozenY T, LawrenceN, ShinerS, LauberMJ. Chromatogr. A, 2022, 1676: 463262.

[29]

GuimaraesG J, BartlettM GAnal. Chim. Acta, 2023, 1250: 340994.

[30]

FeketeS, DeLanoM, HarrisonA B, ShinerS J, BelangerJ L, WyndhamK D, LauberM AAnal. Chem., 2022, 94: 3360.

[31]

YanY, XingT, WangS, DalyT J, LiNAnal. Chem., 2019, 91: 11417.

[32]

IurashevD, SchweigerS, JungbauerA, ZanghelliniJJ. Chromatogr. A, 2019, 1599: 55.

[33]

di StasioE, de CristofaroRBiophys. Chem., 2010, 153: 1.

[34]

FeketeS, GanzlerK, GuillarmeDJ. Pharm. Biomed. Anal., 2013, 78/79: 141.

[35]

VentouriI K, VeeldersS, PassamontiM, EndresP, RoemlingR, SchoenmakersP J, SomsenG W, HaselbergR, GarganoA F GAnal. Chim. Acta, 2023, 1266: 341324.

[36]

HechtE S, ObiorahE C, MorrisonL, ShionH, LauberMJ. Chromatogr. A, 2022, 1685: 463638.

[37]

van der RestG, HalgandFJ. Am. Soc. Mass Spectrom., 2017, 28: 2519.

[38]

DeslignièreE, EhkirchA, BotzanowskiT, BeckA, Hernandez-AlbaO, CianferaniSAnal. Chem., 2020, 92: 12900.

[39]

FeketeS, VeutheyJ-L, BeckA, GuillarmeDJ. Pharm. Biomed. Anal., 2016, 130: 3.

[40]

LiY, LiW, ZhengY, WangT, PuR, ZhangZTalanta, 2025, 281: 126824.

[41]

ChenB, PengY, ValejaS G, XiuL, AlpertA J, GeYAnal. Chem., 2016, 88: 1885.

[42]

YanY, XingT, WangS, DalyT J, LiNJ. Pharm. Biomed. Anal., 2020, 186: 113313.

[43]

YanY, XingT, WangS, LiNJ. Am. Soc. Mass Spectrom., 2020, 31: 2171.

[44]

VerscheureL, VanhoenackerG, SchneiderS, MerchiersT, StormsJ, SandraP, LynenF, SandraKAnal. Chem., 2022, 94: 6502.

[45]

SarinD, KumarS, RathoreA SAnal. Chem., 2022, 94: 15018.

[46]

FeketeS, BeckA, VeutheyJ-L, GuillarmeDJ. Pharm. Biomed. Anal., 2015, 113: 43.

[47]

WebbJ, NiuC, RitterB, AlbarghouthiM, ChenX, WangCJ. Pharm. Sci., 2024, 113: 3279.

[48]

Schuurmans StekhovenF M, GorissenM H, FlikGFish Physiol. Biochem., 2008, 34: 1.

[49]

FarsangE, MurisierA, HorváthK, BeckA, KormányR, GuillarmeD, FeketeSJ. Pharm. Biomed. Anal., 2019, 168: 138.

[50]

FischerM S, RogersH T, ChapmanE A, ChanH-J, KrichelB, GaoZ, LarsonE J, GeYJ. Proteome Res., 2024, 23: 2315.

[51]

MarekW K, SauerD, DürauerA, JungbauerA, PiątkowskiW, AntosDJ. Chromatogr. A, 2018, 1566: 89.

[52]

FeketeS, BeckA, VeutheyJ-L, GuillarmeDAnal. Chem., 2019, 91: 12954.

[53]

FarnanD, MorenoG TAnal. Chem., 2009, 81: 8846.

[54]

BertolettiL, RegazzoniL, AldiniG, ColomboR, AbballeF, CaccialanzaG, de LorenziEAnal. Chim. Acta, 2013, 771: 108.

[55]

FarsangE, GuillarmeD, VeutheyJ-L, BeckA, LauberM, SchmudlachA, FeketeSJ. Pharm. Biomed. Anal., 2020, 185: 113207.

[56]

DonnellyD P, RawlinsC M, DeHartC J, FornelliL, SchachnerL F, LinZ, LippensJ L, AluriK C, SarinR, ChenB, LantzC, JungW, JohnsonK R, KollerA, WolffJ J, CampuzanoI D G, AuclairJ R, IvanovA R, WhiteleggeJ P, Paša-TolićL, Chamot-RookeJ, DanisP O, SmithL M, TsybinY O, LooJ A, GeY, KelleherN L, AgarJ NNat Methods, 2019, 16: 587.

[57]

ZhaiZ, MavridouD, DamianM, MuttiF G, SchoenmakersP J, GarganoA F GAnal. Chem., 2024, 96: 8880.

[58]

LeblancY, FaidV, LauberM A, WangQ, BihoreauN, ChevreuxGJ. Chromatogr. B, 2019, 1133: 121814.

[59]

BierMElectrophoresis: Theory, Methods, Applications, 2013New YorkElsevier

[60]

ZhangW, RamautarRElectrophoresis, 2021, 42: 381.

[61]

JohnsonK R, GaoY, GregušM, IvanovA RAnal. Chem., 2022, 94: 14358.

[62]

LiJ, HuangL, GuoY, Cupp-SuttonK A, WuSAnal. Bioanal. Chem, 2023, 415: 6961.

[63]

ZhangW, WuH, ZhangR, FangX, XuWChem. Sci., 2019, 10: 7779.

[64]

JenderM, HövingS, NovoP, FreierE, JanasekDAnal. Chem., 2021, 93: 7204.

[65]

ParkJ K, CamposC D M, NeužilP, AbelmannL, GuijtR M, ManzALab Chip, 2015, 15: 3495.

[66]

StolzA, JooßK, HöckerO, RömerJ, SchlechtJ, NeusüßCElectrophoresis, 2019, 40: 79.

[67]

PiaggioM V, PeirottiM B, DeiberJ AElectrophoresis, 2006, 27: 4631.

[68]

WuH, TangKRev. Anal. Chem., 2020, 39: 45.

[69]

KonášováR, KovalD, HošekJ, KašičkaVTalanta, 2021, 228: 122212.

[70]

WuZ, WangH, WuJ, HuangY, ZhaoX, NguyenJ B, RosconiM P, PylesE A, QiuH, LiNJ. Pharm. Biomed. Anal., 2023, 223: 115147.

[71]

WuZ, WangH, ZhaoX, GongC, SidnamS, Cantero-TubillaB, Nedjic-DugicB, LiM, WuJ, SuY, HuangY, QiuH, LiNJ. Pharm. Sci., 2024, 113: 2170.

[72]

SmithJ, CarilloS, KulkarniA, RedmanE, YuK, BonesJAnal. Bioanal. Chem., 2023, 416: 1069.

[73]

JiaD, NemesPAnal. Chem., 2024, 96: 16985.

[74]

WuH, ZhangR, ZhangW, HongJ, XiangY, XuWChem. Sci., 2020, 11: 4758.

[75]

HeM, LuoP, HongJ, WangX, WuH, ZhangR, QuF, XiangY, XuWACS Omega, 2019, 4: 2377.

[76]

ZhangR, WuH, HeM, ZhangW, XuWJ. Phys. Chem. B, 2019, 123: 2335.

[77]

NatalelloA, SantambrogioC, GrandoriRJ. Am. Soc. Mass Spectrom., 2017, 28: 21.

[78]

HongJ, WuH, ZhangR, HeM, XuWAnal. Chem., 2020, 92: 5200.

[79]

ZhangW, HongJ, YangL, XuZ, XiangY, XuWChinese Chemical Letters, 2024, 35: 108695.

[80]

HannigKAnal. Chem., 1961, 181: 244.

[81]

NovoP, JanasekDAnal. Chim. Acta, 2017, 991: 9.

[82]

ChartogneA, TjadenU R, Van der GreefJRapid Commun. Mass Spectrom., 2000, 14: 1269.

[83]

BenzC, BoomhoffM, AppunJ, SchneiderC, BelderDAngew. Chem. Int. Ed., 2015, 54: 2766.

[84]

JenderM, NovoP, MaehlerD, MünchbergU, JanasekD, FreierEAnal. Chem., 2020, 92: 6764.

[85]

KoeglerW S, IvoryC FJ. Chromatogr. A, 1996, 726: 229.

[86]

KoeglerW S, IvoryC FBiotechnol. Prog., 1996, 12: 822.

[87]

SunX, FarnsworthP B, WoolleyA T, TolleyH D, WarnickK F, LeeM LAnal. Chem., 2008, 80: 451.

[88]

SunX, LiD, WoolleyA T, FarnsworthP B, TolleyH D, WarnickK F, LeeM LJ. Chromatogr. A, 2009, 1216: 6532.

[89]

LinS-L, LiY, WoolleyA T, LeeM L, TolleyH D, WarnickK FElectrophoresis, 2008, 29: 1058.

[90]

PapadimitriouV A, SegerinkL I, EijkelJ C TLab Chip, 2019, 19: 3238.

[91]

SchmidtA J, ZamuruyevK O, LeVasseurM K, FungS, AnishchenkoI M, KenyonN J, DavisC EMicroelectron Eng., 2023, 276: 111997.

[92]

MellorsJ S, GorbounovV, RamseyR S, RamseyJ MAnal. Chem., 2008, 80: 6881.

[93]

FritzscheS, HoffmannP, BelderDLab Chip., 2010, 10: 1227.

[94]

KachkineA, Velásquez-GarcíaL FJ. Am. Soc. Mass Spectrom., 2024, 35: 862.

[95]

DaiG, LiL, MengX, JiangT, XuWAnal. Chem., 2024, 96: 13025.

[96]

RossD, LocascioL EAnal. Chem., 2002, 74: 2556.

[97]

RogacsA, SantiagoJ GAnal. Chem., 2013, 85: 5103.

[98]

CourtneyM, ThompsonE, GlawdelT, RenC LAnal. Chem., 2020, 92: 7317.

[99]

CourtneyM, GlawdelT, RenC LElectrophoresis, 2023, 44: 646.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/