FRET-LPTEM for In-situ Imaging of Chemical Systems

Zhun Xu , Deyi Zhang , Tianyu Xiong , Huan Wang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 319 -325.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 319 -325. DOI: 10.1007/s40242-025-4241-7
Article

FRET-LPTEM for In-situ Imaging of Chemical Systems

Author information +
History +
PDF

Abstract

An in-situ double-tilt holder has been made to integrate laser illumination and fluorescence-based spectroscopic analysis for conducting liquid-phase electron microscopy (LP-TEM) experiments using ordinary TEM. The setup differs from the existing geometry. Laser illumination and the collection of fluorescence signals were achieved using a single optical fiber, with efficiency optimized by adjusting the fiber position and grid tilt angle. Fluorescence emission of common organic dyes, propidium iodide (PI) and cyanine dyes, and Förster resonance energy transfer (FRET) signals of a FRET pair, Cy3/Cy5, were obtained from three types of liquid cells, including carbon film, graphene, and nanopipette liquid cells. The successful application of FRET-LPTEM enables LP-TEM experiments to be equipped with controlled light-triggering capability, detection of fluorogenic small molecules during chemical reactions, and the standard FRET experiments for macromolecules being conducted with LP-TEM. FRET-LPTEM presents opportunities for unraveling pathways underpinning the synthesis and assembly of optically active organic and biological materials.

Keywords

In-situ double-tilt holder / Optical fiber / Light-coupling experiment / Förster resonance energy transfer (FRET) / Liquid-phase electron microscopy (LP-TEM) / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Zhun Xu, Deyi Zhang, Tianyu Xiong, Huan Wang. FRET-LPTEM for In-situ Imaging of Chemical Systems. Chemical Research in Chinese Universities, 2025, 41(2): 319-325 DOI:10.1007/s40242-025-4241-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KlingerMJ. Appl. Crystallogr., 2017, 50: 1226.

[2]

ZouX, HovmollerSActa Crystallogr. A, 2008, 64: 149.

[3]

LiR, LiZ, DongZ, KhorK ACrystals, 2016, 6: 105.

[4]

HarrisJ RArch. Biochem. Biophys., 2015, 581: 3.

[5]

ShenP SAnal. Bioanal. Chem., 2018, 410: 2053.

[6]

HuH, YangR, ZengZACS Nano, 2024, 18: 12598.

[7]

OrjiN G, BadarogluM, BarnesB M, BeitiaC, BundayB D, CelanoU, KlineR J, NeisserM, ObengY, VladarA ENat. Electron., 2018, 1: 532.

[8]

ZhuY, ZhaoH, HeY, WangRJ. Phys. D: Appl. Phys., 2021, 54: 443002.

[9]

HanY, WangL, CaoK, ZhouJ, ZhuY, HouY, LuYChem. Rev., 2023, 123: 14119.

[10]

LiK Q, BuY Q, WangH TFront. Mater., 2023, 10: 1207024.

[11]

LiJ-Y, ZhangD-Y, MaoS, WangHChin. J. Chem., 2023, 41: 679.

[12]

LiJ-Y, SunH, WangHTrends Chem., 2024, 6: 281.

[13]

LiJ-Y, LiuF, XuJ, KimY-J, KwonO-H, XiaB, WangH, GranickSProc. Natl. Acad. Sci. USA, 2024, 121: e2314797121.

[14]

ZhangD, ShaoY, ZhouJ, ZhanQ, WenZ, MaoS, WeiJ, QiL, ShaoY, WangHProc. Natl. Acad. Sci. USA, 2024, 121: e2314320121.

[15]

WangH, XuZ, MaoS, GranickSACS Nano, 2022, 16: 18526.

[16]

McKinneyS A, JooC, HaTBiophys. J., 2006, 91: 1941.

[17]

BalciH, ArslanS, MyongS, LohmanT M, HaTBiophys. J., 2011, 101: 976.

[18]

DongH, XuF, SunZ, WuX, ZhangQ, ZhaiY, TanX D, HeL, XuT, ZhangZ, DuanX, SunLNat. Nanotechnol., 2019, 14: 950.

[19]

GaoP, WangZ Z, LiuK H, XuZ, WangW L, BaiX D, WangE GJ. Mater. Chem., 2009, 19: 1002.

[20]

OhnoY, TaishiT, YonenagaIPhys. Status Solidi A, 2009, 206: 1904.

[21]

OhnoYAppl. Phys. Express, 2012, 5: 125204.

[22]

CavalcaF, LaursenA B, KardynalB E, Dunin-BorkowskiR E, DahlS, WagnerJ B, HansenT WNanotechnology, 2012, 23: 075705.

[23]

PengS, WangY, BraunM, YinY, MengA C, TanW, SainiB, SeversonK, MarshallA F, SytwuK, BanieckiJ D, DionneJ, CaiW, McIntyreP CMatter, 2023, 6: 2052.

[24]

DuanT, WangW, CaiS, ZhouYACS Energy Lett., 2023, 8: 3048.

[25]

OhnoY, YonenagaIAppl. Surf. Sci., 2014, 302: 29.

[26]

YoshidaK, YamasakiJ, TanakaNAppl. Phys. Lett., 2004, 84: 2542.

[27]

LuY, YinW-J, PengK-L, WangK, HuQ, SelloniA, ChenF-R, LiuL-M, SuiM-LNat. Commun., 2018, 9: 2752.

[28]

YuS, JiangY, SunY, GaoF, ZouW, LiaoH, DongLAppl. Catal. B-Environ., 2021, 284: 119743.

[29]

WengB, JiangY, LiaoH-G, RoeffaersM B J, LaiF, HuangH, TangZNano Res., 2021, 14: 2805.

[30]

ShindoD, TakahashiK, MurakamiY, YamazakiK, DeguchiS, SugaH, KondoYJ. Electron Microsc. (Tokyo), 2009, 58: 245.

[31]

DombiP, PápaZ, VogelsangJ, YaluninS V, SivisM, HerinkG, SchäferS, GroßP, RopersC, LienauCRev. Mod. Phys., 2020, 92: 025003.

[32]

FuX, LiuS, ChenB, TangJ, ZhuYACS Nano, 2021, 15: 6801.

[33]

ZonnevylleA C, Van TolR F C, LivN, NarvaezA C, EfftingA P J, KruitP, HoogenboomJ PJ. Microsc., 2013, 252: 58.

[34]

MaruyamaY, EbiharaT, NishiyamaH, SugaM, SatoCJ. Struct. Biol., 2012, 180: 259.

[35]

BergerC, DumouxM, GlenT, YeeN B Y, MitchelsJ M, PatákováZ, DarrowM C, NaismithJ H, GrangeMNat. Commun., 2023, 14: 629.

[36]

MohammadianS, AgronskaiaA V, BlabG A, van DonselaarE G, de HeusC, LivN, KlumpermanJ, GerritsenH CUltramicroscopy, 2020, 215: 113007.

[37]

AgronskaiaA V, ValentijnJ A, van DrielL F, SchneijdenbergC T W M, HumbelB M, van Bergen en HenegouwenP M P, VerkleijA J, KosterA J, GerritsenH CJ. Struct. Biol., 2008, 164: 183.

[38]

LiuC, MaC, XuJ, QiaoR, SunH, LiX, XuZ, GaoP, WangE, LiuK, BaiXRev. Sci. Instrum., 2021, 92: 013704.

[39]

ŻakA MNano Lett., 2022, 22: 9219.

[40]

FernandoJ F S, ZhangC, FiresteinK L, GolbergDSmall, 2017, 13: 1701564.

[41]

YuS, JiangY, SunY, GaoF, ZouW, LiaoH, DongLApplied Catalysis B: Environmental, 2021, 284: 119743.

[42]

IqbalA, ArslanS, OkumusB, WilsonT J, GiraudG, NormanD G, HaT, LilleyD M JProc. Natl. Acad. Sci. USA, 2008, 105: 11176.

[43]

RoyR, HohngS, HaTNature Methods, 2008, 5: 507.

[44]

AshokaA H, AparinI O, ReischA, KlymchenkoA SChem. Soc. Rev., 2023, 52: 4525.

[45]

ChristieJ M, ArvaiA S, BaxterK J, HeilmannM, PrattA J, O’HaraA, KellyS M, HothornM, SmithB O, HitomiK, JenkinsG I, GetzoffE DScience, 2012, 335: 1492.

[46]

ChangR, ZhaoL, XingR, LiJ, YanXChem. Soc. Rev., 2023, 52: 2688.

[47]

SinghR, WangZ, MarquesC, MinR, ZhangB, KumarSBiosens. Bioelectron., 2023, 236: 115424.

[48]

ParkS, RimS, KimJ W, ParkJ, SohnI-B, LeeB HSensors, 2018, 18: 4150.

[49]

KubelkaJPhotochem. Photobiol. Sci., 2009, 8: 499.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/