Chemical-sensitive Electron Tomography for Nanomaterials

Liangwei Liu , Shiqiang Feng , Lili Han

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 222 -236.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 222 -236. DOI: 10.1007/s40242-025-4239-1
Review

Chemical-sensitive Electron Tomography for Nanomaterials

Author information +
History +
PDF

Abstract

Nanomaterials have greatly received interest in various fields due to their excellent activity, typically attributed to their nanoscale physical and chemical properties. Transmission electron microscopy (TEM) as a powerful tool for characterizing nanomaterials can offer microscopic information with high spatial resolution. However, TEM faces challenges in obtaining information along the electron beam direction (Z direction), which limits its ability to explore the unique characteristics of nanomaterials on a three-dimensional (3D) scale. Electron tomography (ET) is an advanced imaging technique that allows for the visualization of 3D structures of nanomaterials. When combined with energy-dispersive X-ray spectroscopy (EDS) or electron energy loss spectroscopy (EELS), it enables researchers to reveal chemical changes in three dimensions, enhancing the understanding of the complex mechanisms underlying changes in chemical properties. This review summarizes and discusses the recent advancements in EDS/EELS (chemical-sensitive) ET imaging techniques, including the traditional reconstruction method, deep learning-based method, and multi-modal method, which provide detailed processes of reconstruction to facilitate the understanding of how they work for related researchers. Moreover, several successful applications are presented to show the capabilities of chemical-sensitive ET in diverse fields. Finally, the existing challenges and solutions are discussed to propel the development of ET imaging techniques.

Keywords

Nanomaterial / Electron tomography / Three dimension (3D) / Energy-dispersive X-ray spectroscopy (EDS) / Electron energy loss spectroscopy / Physical Sciences / Other Physical Sciences / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Liangwei Liu, Shiqiang Feng, Lili Han. Chemical-sensitive Electron Tomography for Nanomaterials. Chemical Research in Chinese Universities, 2025, 41(2): 222-236 DOI:10.1007/s40242-025-4239-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GilbertB, CavoueT, AouineM, BurelL, AiresF J C S, CaravacaA, RieuM, ViricelleJ P, BruyèreS, HorwatD, MigotS, VilasiP, VernouxPElectrochim Acta, 2021, 394: 139018.

[2]

ZhangJ, WangL, ShaoY, WangY Q, GatesB C, XiaoF SAngew. Chem. Int. Ed. Engl., 2017, 56: 9747.

[3]

JiangX, KoizumiN, GuoX W, SongC SAppl. Catal. B, 2015, 170: 173.

[4]

ShangK S, WangS J, ChenS Y, WangXBiosensors, 2022, 12: 588.

[5]

YangW B, NiuS Q, WangY, HuangL J, WangS C, PopatK C, KipperM J, BelfioreL A, TangJNanomaterials, 2021, 11: 3283.

[6]

Al-GethamiW, AlhashmialameerD, Al-QasmiN, IsmailS H, SadekA HNanomaterials, 2022, 12: 3620.

[7]

PanW X, LiuR B, XieR H, ZhuangY Z, MaoX K, ZhangY MIEEE Trans. Power Electron., 2024, 40: 6272.

[8]

TangH M, LiuC, PanW X, RaoP Y, ZhuangY Z, ChenX Y, ZhangY MIEEE Trans. Power Electron., 2024, 40: 4630.

[9]

ZhangR, WangC Y, ZouP C, LinR Q, MaL, YinL, LiT Y, XuW Q, JiaH, LiQ Y, SainioS, KisslingerK, TraskS E, EhrlichS N, YangY, KissA M, GeM, PolzinB J, LeeS J, XuW, RenY, XinH LNature, 2022, 610: 67.

[10]

WangC Y, HanL L, ZhangR, ChengH, MuL Q, KisslingerK, ZouP C, RenY, CaoP H, LinF, XinH LMatter, 2021, 4: 2013.

[11]

LinR Q, HeY B, WangC Y, ZouP C, HuE Y, YangX Q, XuK, XinH LNat. Nanotechnol., 2022, 17: 768.

[12]

WangC Y, JingY Q, ZhuD, XinH LJ. Am. Chem. Soc., 2024, 146: 17712.

[13]

WangC Y, LinR Q, HeY B, ZouP C, KisslingerK, HeQ, LiJ, XinH LAdv. Mater., 2023, 35: 2209091.

[14]

CherukaraM J, PokharelR, O’LearyT S, BaldwinJ K, MaxeyE, ChaW, MaserJ, HarderR J, FensinS J, SandbergR LNat. Commun., 2018, 9: 3776.

[15]

DrábikM, PešičkaJ, BiedermanH, HegemannDSci. Technol. Adv. Mater., 2015, 16: 025005.

[16]

WeylandM, YatesT J V, Dunin-BorkowskiR E, LaffontL, MidgleyP AScr. Mater., 2006, 55: 29.

[17]

VolkmannNBiophys. J., 2012, 102: 394a.

[18]

ZhangL J, HuH H, SunC, XiaoD D, WangH T, XiaoY, ZhaoS W, ChenK H, LinW X, ShaoY C, WangX Y, PaoC W, HanL LNat. Commun., 2024, 15: 7179.

[19]

WangC Y, DuK, SongK P, YeX, QiL, HeS, TangD M, LuN, JinH J, LiF, YeH QPhys. Rev. Lett., 2018, 120: 186102.

[20]

WangC Y, DuanH C, ChenC J, WuP, QiD Q, YeH Q, JinH J, XinH L, DuKMatter, 2020, 3: 1999.

[21]

WangC Y, LiuH Y, DuanH C, LiZ W, ZengP L, ZouP C, WangX L, YeH Q, XinH L, DuKJ. Mater. Chem. A, 2021, 9: 25513.

[22]

WuZ H, WangC Y, HuiZ Y, LiuH D, WangS, YuS C, XingX, HoloubekJ, MiaoQ S, XinH L, LiuPNat. Energy, 2023, 8: 340.

[23]

BuzugT MSpringer Handbook of Medical Technology, 2011Berlin, HeidelbergSpringer

[24]

WeylandM, MidgleyP AMater., Today, 2004, 7: 32.

[25]

WithersP J, BoumanC, CarmignatoS, CnuddeV, GrimaldiD, HagenC K, MaireE, ManleyM, Du PlessisA, StockS RNat. Rev. Methods Primer, 2021, 1: 1.

[26]

LearyR K, MidgleyP ASpringer Handbook of Microscopy, 2019ChamSpringer International Publishing

[27]

CollinsS M, MidgleyP AUltramicroscopy, 2017, 180: 133.

[28]

LearyR K, MidgleyP AMRS Bull., 2016, 41: 531.

[29]

LinY, ZhouM, TaiX L, LiH F, HanX, YuJ GMatter, 2021, 4: 2309.

[30]

SlaterT J A, MacedoA, SchroederS L M, BurkeM G, O’BrienP, CamargoP H C, HaighS JNano Lett., 2014, 14: 1921.

[31]

WilliamsD B, CarterC BTransmission Electron Microscopy: A Textbook for Materials Science, 20082nd Ed.New YorkSpringer

[32]

WangZ L, YinJ S, JiangY DMicron., 2000, 31: 571.

[33]

DaultonT L, LittleB JUltramicroscopy, 2006, 106: 561.

[34]

ZanagaD, BleichrodtF, AltantzisT, WinckelmansN, PalenstijnW J, SijbersJ, de NijsB, van HuisM A, Sánchez-IglesiasA, Liz-MarzánL M, van BlaaderenA, Joost BatenburgK, BalsS, Van TendelooGNanoscale, 2016, 8: 292.

[35]

PryorAJr., YangY, RanaA, Gallagher-JonesM, ZhouJ H, LoH Y, MelinteG, RodriguezJ A, MiaoJ WMicrosc. Microanal., 2017, 23: 128.

[36]

JenkinsonK, Liz-MarzánL M, BalsSAdv. Mater., 2022, 34: 2110394.

[37]

RadermacherMElectron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope, 1992BostonSpringer

[38]

GilbertPJ. Theor. Biol., 1972, 36: 105.

[39]

HanL L, MengQ P, WangD L, ZhuY M, WangJ, DuX W, StachE A, XinH LNat. Commun., 2016, 7: 1

[40]

WangC Y, DingG L, LiuY T, XinH LAdv. Intell. Syst., 2020, 2: 2000152.

[41]

YalisoveR, SungS H, ErciusP, HovdenRPhys. Rev. Appl., 2021, 15: 014003.

[42]

TouveM A, CarliniA S, GianneschiN CNat. Commun., 2019, 10: 4837.

[43]

García de ArquerF P, TalapinD V, KlimovV I, ArakawaY, BayerM, SargentE HScience, 2021, 373: eaaz8541.

[44]

WuH L, LiX B, TungC H, WuL ZAdv. Mater., 2019, 31: 1900709.

[45]

BijuV, ItohT, AnasA, SujithA, IshikawaMAnal. Bioanal. Chem., 2008, 391: 2469.

[46]

HanY, JangJ, ChaE, LeeJ, ChungH, JeongM, KimT G, ChaeB G, KimH G, JunS, HwangS, LeeE, YeJ CNat. Mach. Intell., 2021, 3: 267.

[47]

ChaE, ChungH, JangJ, LeeJ, LeeE, YeJ CACS Nano, 2022, 16: 10314.

[48]

ChakrabortyS, MaliKAppl. Soft Comput., 2022, 129: 109625.

[49]

BakN, EbdrupB H, OranjeB, FagerlundB, JensenM H, DüringS W, Nielsen, GlenthøjB Y, HansenL KTransl. Psychiatry, 2017, 7: e1087.

[50]

SkorikovA, HeyvaertW, AlbechtW, PeltD M, BalsSNanoscale, 2021, 13: 12242.

[51]

GrzonkaJ, Marqueses-RodríguezJ, Fernández-GarcíaS, ChenX W, CalvinoJ J, López-HaroMAdv. Intell. Syst., 2023, 5: 2200231.

[52]

KimH K, HaH Y, BaeJ H, ChoM K, KimJ, HanJ, SuhJ Y, KimG H, LeeT H, JangJ H, ChunDSci. Rep., 2020, 10: 1.

[53]

LahatD, AdaliT, JuttenCProc. IEEE, 2015, 103: 1449.

[54]

YuanY, MacArthurK E, CollinsS M, BroduschN, VoisardF, Dunin-BorkowskiR E, GauvinRUltramicroscopy, 2021, 220: 113166.

[55]

CalhounV D, SuiJBiol. Psychiatry Cogn. Neurosci. Neuroimaging, 2016, 1: 230

[56]

SchwartzJ, DiZ W, JiangY, ManassaJ, PietrygaJ, QianY W, ChoM G, RowellJ L, ZhengH H, RobinsonR D, GuJ, KirilinA, RozeveldS, ErciusP, FesslerJ A, XuT, ScottM, HovdenRNat. Commun., 2024, 15: 1

[57]

HuberR, HaberfehlnerG, HollerM, KothleitnerG, BrediesKNanoscale, 2019, 11: 5617.

[58]

ZhongZ C, GorisB, SchoenmakersR, BalsS, BatenburgK JUltramicroscopy, 2017, 174: 35.

[59]

ZhongZ C, PalenstijnW J, AdlerJ, BatenburgK JUltramicroscopy, 2018, 191: 34.

[60]

AnV, PotgieterH, UsoltsevaN, ValievD, StepanovS, PustovalovA, BaryshnikovA, TitovM, DolininaANanomaterials, 2021, 11: 157.

[61]

RuanL F, ZhangYNat. Commun., 2021, 12: 219.

[62]

MukherjeeP, LimS J, WrobelT P, BhargavaR, SmithA MJ. Am. Chem. Soc., 2016, 138: 10887.

[63]

XiaW W, YangY, MengQ P, DengZ P, GongM X, WangJ, WangD L, ZhuY M, SunL T, XuF, LiJ, XinH LACS Nano, 2018, 12: 7866.

[64]

GorisB, PolavarapuL, BalsS, Van TendelooG, Liz-MarzánL MNano Lett., 2014, 14: 3220.

[65]

LiakakosN, GatelC, BlonT, AltantzisT, Lentijo-MozoS, Garcia-MarcelotC, LacroixL-M, RespaudM, BalsS, Van TendelooG, SoulanticaKNano Lett., 2014, 14: 2747.

[66]

Sanna AngotziM, MusinuA, MameliV, ArduA, CaraC, NiznanskyD, XinH L, CannasCACS Nano, 2017, 11: 7889.

[67]

KrivanekO L, DellbyN, HachtelJ A, IdroboJ-C, HotzM T, Plotkin-SwingB, BaconN J, BlelochA L, CorbinG J, HoffmanM V, MeyerC E, LovejoyT CUltramicroscopy, 2019, 203: 60.

[68]

YinY D, RiouxR M, ErdonmezC K, HughesS, SomorjaiG A, AlivisatosA PScience, 2004, 304: 711.

[69]

AndersonB D, TracyJ BNanoscale, 2014, 6: 12195.

[70]

PolavarapuL, ZanagaD, AltantzisT, Rodal-CedeiraS, Pastoriza-SantosI, Pérez-JusteJ, BalsS, Liz-MarzánL MJ. Am. Chem. Soc., 2016, 138: 11453.

[71]

FuB Z, GribelyukM AJ. Appl. Phys., 2018, 123: 161554.

[72]

FarooqU, AhmadT, NaazF, IslamS UEnergy Fuels, 2023, 37: 1577.

[73]

WangD, AstrucDChem. Soc. Rev., 2017, 46: 816.

[74]

MondalA, BiswasS, Srishti, KumarA, YuJ S, SinhamahapatraANanoscale Adv., 2020, 2: 4473.

[75]

SunH Y, HuaQ, GuoF F, WangZ Y, HuangW XAdv. Synth. Catal., 2012, 354: 569.

[76]

ParkE J, LeeJ H, KimK D, KimD H, JeongM G, KimY DCatal. Today, 2016, 260: 100.

[77]

GorisB, TurnerS, BalsS, Van TendelooGACS Nano, 2014, 8: 10878.

[78]

SayleD C, MaicaneanuS A, WatsonG WJ. Am. Chem. Soc., 2002, 124: 11429.

[79]

FeldA, WeimerA, KornowskiA, WinckelmansN, MerklJ-P, KloustH, ZieroldR, SchmidtkeC, SchottenT, RiednerM, BalsS, WellerHACS Nano, 2019, 13: 152.

[80]

GorisB, MeledinaM, TurnerS, ZhongZ, BatenburgK J, BalsSUltramicroscopy, 2016, 171: 55.

[81]

SunX L, Frey HulsN, SigdelA, SunS HNano Lett., 2012, 12: 246.

[82]

KavichD W, DickersonJ H, MahajanS V, HasanS A, ParkJ-HPhys. Rev. B, 2008, 78: 174414.

[83]

AnkerJ N, HallW P, LyandresO, ShahN C, ZhaoJ, Van DuyneR PNat. Mater., 2008, 7: 442.

[84]

GuoL H, JackmanJ A, YangH H, ChenP, ChoN J, KimD HNano Today, 2015, 10: 213.

[85]

GarcíaI, MosqueraJ, PlouJ, Liz-MarzánL MAdv. Opt. Mater., 2018, 6: 1800680.

[86]

FarooqS, WaliF, ZezellD M, de AraujoR E, RativaDPolymers, 2022, 14: 1592.

[87]

WysockaI, KowalskaE, RylJ, NowaczykG, Zielińska-JurekANanomaterials, 2019, 9: 1129.

[88]

YaoG Y, LiuQ L, ZhaoZ YCatalysts, 2018, 8: 236.

[89]

ChenX J, CabelloG, WuD Y, TianZ QJ. Photochem. Photobiol. C, Photochem. Rev., 2014, 21: 54.

[90]

ElibolK, van AkenP AACS Nano, 2022, 16: 11931.

[91]

JosephJ, ArmaoI V, NyrkovaI, FuksG, OsypenkoA, MaaloumM, MoulinE, ArenalR, GavatO, SemenovA, GiusepponeNJ. Am. Chem. Soc., 2017, 139: 2345.

[92]

WuY Y, LiG L, CamdenJ PChem. Rev., 2018, 118: 2994.

[93]

LiG L, CherquiC, WuY, BigelowN W, SimmonsP D, RackP D, MasielloD J, CamdenJ PJ. Phys. Chem. Lett., 2015, 6: 2569.

[94]

KohA L, Fernández-DomínguezA I, McCombD W, MaierS A, YangJ K WNano Lett., 2011, 11: 1323.

[95]

NicolettiO, de la PeñaF, LearyR K, HollandD J, DucatiC, MidgleyP ANature, 2013, 502: 80.

[96]

ArchanjoB S, VasconcelosT L, OliveiraB S, SongC, AllenF I, AcheteC A, ErciusPACS Photonics, 2018, 5: 2834.

[97]

MayerK M, HafnerJ HChem. Rev., 2011, 111: 3828.

[98]

LiX, AnwerS, GuanQ S, AnjumD H, PalmisanoG, ZhengL XAdv. Sci., 2022, 9: 2200346.

[99]

ShaoY X, YouD, WanY Q, ChengQ R, PanZ QReact. Chem. Eng., 2024, 9: 70.

[100]

ZhangJ, ZhangX L, LiJ, MaZ Y, LengB, XiaQ X, ShenL H, SongY D, FuZ W, FengS Y, FengL Z, LiuZ T, YuldashevS, JiangX, LiuB DOpt. Mater., 2022, 124: 111997.

[101]

DingR Q, DaiH, LiM C, HuangJ J, LiY F, TrevorM, MusselmanK PAppl. Phys. Lett., 2014, 104: 011602.

[102]

KusadaK, WuD S, YamamotoT, ToriyamaT, MatsumuraS, XieW, KoyamaM, KawaguchiS, KubotaY, KitagawaHChem. Sci., 2019, 10: 652.

[103]

LiuG X, LiuJ F, ZhouW J, LiL Y, YouC L, QiuC W, WuLNanophotonics, 2023, 12: 1943.

[104]

YanY, LuoY JOpt. Laser Technol., 2023, 164: 109558.

[105]

García de AbajoF J, KociakMPhys. Rev. Lett., 2008, 100: 106804.

[106]

HörlA, HaberfehlnerG, TrüglerA, SchmidtF P, HohenesterU, KothleitnerGNat. Commun., 2017, 8: 37.

[107]

HörlA, HaberfehlnerG, TrüglerA, SchmidtF-P, HohenesterU, KothleitnerGNat. Commun., 2017, 8: 37.

[108]

HaberfehlnerG, SchmidtF-P, SchaffernakG, HoerlA, TrueglerA, HohenauA, HoferF, KrennJ R, HohenesterU, KothleitnerGNano Lett., 2017, 17: 6773.

[109]

LiX Y, HaberfehlnerG, HohenesterU, StéphanO, KothleitnerG, KociakMScience, 2021, 371: 1364.

[110]

Tong, RiceC, GodboutN, WieckowskiA, OldfieldEJ. Am. Chem. Soc., 1999, 121: 2996.

[111]

SlaterJ A, JanssenA, CamargoP H C, BurkeM G, ZaluzecN J, HaighS JUltramicroscopy, 2016, 162: 61.

[112]

RegueraJ, Jiménez de AberasturiD, WinckelmansN, LangerJ, BalsS, Liz-MarzánL MFaraday Discuss., 2016, 191: 47.

[113]

Pedrazo-TardajosA, ArslanIrmakE, KumarV, Sánchez-IglesiasA, ChenQ, WirixM, FreitagB, AlbrechtW, VanAertS, Liz-MarzánL, BalsSACS Nano, 2022, 16: 9608.

[114]

SaghiZ, XuX, PengY, InksonB, MöbusGAppl. Phys. Lett., 2007, 91: 251906.

[115]

GencA, KovarikL, GuM, ChengH K, PlachindaP, PullanL, FreitagB, WangC MUltramicroscopy, 2013, 131: 24.

[116]

MahrC, KunduP, LackmannA, ZanagaD, ThielK, SchowalterM, SchwanM, BalsS, WittstockA, RosenauerAJ. Catal., 2017, 352: 52.

[117]

SkorikovA, AlbrechtW, BladtE, XieX B, van der HoevenJ E S, van BlaaderenA, Van AertS, BalsSACS Nano, 2019, 13: 13421.

[118]

González-RubioG, Díaz-NúñezP, AlbrechtW, Manzaneda-GonzálezV, BañaresL, RiveraA, Liz-MarzánL M, Peña-RodríguezO, BalsS, Guerrero-MartínezAAdv. Opt. Mater., 2021, 9: 2002134.

[119]

LepinayK, LorutF, PantelR, EpicierTMicron, 2013, 47: 43.

[120]

TorruellaP, ArenalR, de la PeñaF, SaghiZ, YedraL, EljarratA, López-ConesaL, EstraderM, López-OrtegaA, Salazar-AlvarezG, NoguésJ, DucatiC, MidgleyP A, PeiróF, EstradéSNano Lett., 2016, 16: 5068.

[121]

YedraL, EljarratA, ArenalR, PellicerE, CaboM, Lopez-OrtegaA, EstraderM, SortJ, Dolors BaroM, EstradeS, PeiroFUltramicroscopy, 2012, 122: 12.

[122]

JarauschK, ThomasP, LeonardD N, TwestenR, BoothC RUltramicroscopy, 2009, 109: 326.

[123]

YedraL, EljarratA, RebledJ M, López-ConesaL, DixN, SánchezF, EstradéS, PeiróFNanoscale, 2014, 6: 6646.

[124]

CollinsS M, RingeE, DuchampM, SaghiZ, Dunin-BorkowskiR E, MidgleyP AACS Photonics, 2015, 2: 1628.

[125]

Sun C., Liu K., Zhang J., Liu Q., Liu X. J., Han L. L., Chin. J. Struct. Chem., 2022.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/