Imaging Chemical Compositions in Three Dimensions

Xin Wen , Wangxin Zhou , Zhehao Huang , Hui Zhang , Yu Han

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 168 -180.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 168 -180. DOI: 10.1007/s40242-025-4235-5
Review

Imaging Chemical Compositions in Three Dimensions

Author information +
History +
PDF

Abstract

The three-dimensional (3D) imaging of structural and compositional features at the nanometer and atomic scale is crucial for advancing the applications of nanomaterials in energy storage and catalysis. Transmission electron microscopy, particularly in scanning mode, has traditionally provided atomic-resolution structural insights. However, achieving high-resolution 3D compositional imaging of beam-sensitive materials remains formidably challenging due to the limitation of electron dose. Recent innovations in hardware and computational methods, such as data-fusing and deep learning, have enabled 3D compositional imaging at the sub-nanometer scale with significantly reduced electron doses. This review highlights the principles, advancements, and applications of electron tomography and associated techniques for 3D compositional imaging, summarizes state-of-the-art progress achieved by multimodal tomography and model-free reconstructions, and underscores the transformative potential of these developments for 3D high-resolution characterizations of beam-sensitive materials.

Keywords

Transmission electron microscopy / Compositional imaging / Beam-sensitive material / Physical Sciences / Other Physical Sciences / Technology / Nanotechnology

Cite this article

Download citation ▾
Xin Wen, Wangxin Zhou, Zhehao Huang, Hui Zhang, Yu Han. Imaging Chemical Compositions in Three Dimensions. Chemical Research in Chinese Universities, 2025, 41(2): 168-180 DOI:10.1007/s40242-025-4235-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangQ, GaoS, YuJChem. Rev., 2022, 123: 6039.

[2]

SuD S, ZhangB, SchlöglRChem. Rev., 2015, 115: 2818.

[3]

LiuQ, RanocchiariM, van BokhovenJ AChem. Soc. Rev., 2022, 51: 188.

[4]

LinL, LiuJ, LiuX, GaoZ, RuiN, YaoS, ZhangF, WangM, LiuC, HanL, YangF, ZhangS, WenX D, SenanayakeS D, WuY, LiX, RodriguezJ A, MaDNat. Commun., 2021, 12: 6978.

[5]

HeY, JiangL, XuY, WangCMicrosc. Microanal., 2023, 29: 1718.

[6]

VanpeeneV, VillanovaJ, KingA, LestriezB, MaireE, RouéLAdv. Energy Mater., 2019, 9: 1803947.

[7]

PietschP, WoodVAnnu. Rev. Mater. Res., 2017, 47: 451.

[8]

BalsS, GorisB, Liz-MarzánL M, van TendelooGAngew. Chem. Int. Ed., 2014, 53: 10600.

[9]

BosmanM, KeastV J, García-MuñozJ L, D’AlfonsoA J, FindlayS D, AllenL JPhys. Rev. Lett., 2007, 99: 086102.

[10]

MullerD A, KourkoutisL F, MurfittM, SongJ H, HwangH Y, SilcoxJ, DellbyN, KrivanekO LScience, 2008, 319: 1073.

[11]

BrowningN D, ChisholmM F, PennycookS JNature, 1993, 366: 143.

[12]

SrinivasanR, BanerjeeR, HwangJ Y, ViswanathanG B, TileyJ, DimidukD M, FraserH LPhys. Rev. Lett., 2009, 102: 086101.

[13]

SohlbergK, PennycookT J, ZhouW, PennycookS JPhys. Chem. Chem. Phys., 2015, 17: 3982.

[14]

EgertonR FMicron, 2019, 119: 72.

[15]

BrowningRAppl. Phys. Lett., 1991, 58: 2845.

[16]

BoteD, SalvatF, JablonskiA, PowellC JAt. Data Nucl. Data Tables, 2009, 95: 871.

[17]

PerkinsS, CullenD, ChenM, RathkopfJ, ScofieldJ, HubbellJTables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z=1–100, 1991LivermoreLawrence Livermore National Lab..

[18]

MacArthurK E, SlaterT J A, HaighS J, OzkayaD, NellistP D, Lozano-PerezSMicrosc. Microanal., 2016, 22: 71.

[19]

SchlossmacherP, KlenovD O, FreitagB, von HarrachH SMicros. Today, 2010, 18: 14.

[20]

KrivanekO L, DellbyN, HachtelJ A, IdroboJ C, HotzM T, Plotkin-SwingB, BaconN J, BlelochA L, CorbinG J, HoffmanM V, MeyerC E, LovejoyT CUltramicroscopy, 2019, 203: 60.

[21]

von HarrachH S, KlenovD, FreitagB, SchlossmacherP, CollinsP C, FraserH LMicrosc. Microanal., 2010, 16: 1312.

[22]

HarutaM, FujiyoshiY, NemotoT, IshizukaA, IshizukaK, KurataHPhys. Rev. B, 2018, 97: 205139.

[23]

SchwartzJ, DiZ W, JiangY, FielitzA J, HaD H, PereraS D, El BaggariI, RobinsonR D, FesslerJ A, OphusC, RozeveldS, HovdenRNPJ Comput. Mater., 2022, 8: 16.

[24]

LongoP, ThomasP, AitouchenA, SchafferB, TwestenR DMicros. Today, 2013, 21: 36.

[25]

GázquezJ, Sánchez-SantolinoG, BiškupN, RoldánM A, CaberoM, PennycookS J, VarelaMMater. Sci. Semicond. Process., 2017, 65: 49.

[26]

D’AlfonsoA J, FreitagB, KlenovD, AllenL JPhys. Rev. B, 2010, 81: 100101.

[27]

LuP, ZhouL, KramerM J, SmithD JSci. Rep., 2014, 4: 3945.

[28]

WennerS, JonesL, MarioaraC D, HolmestadRMicron, 2017, 96: 103.

[29]

MiaoJ, ErciusP, BillingeS J LScience, 2016, 353: aaf2157.

[30]

ZhouJ, YangY, ErciusP, MiaoJMRS Bull., 2020, 45: 290.

[31]

BabaN, HataS, SaitoH, KanekoKMicroscopy, 2023, 72: 111.

[32]

MidgleyP A, Dunin-BorkowskiR ENat. Mater., 2009, 8: 271.

[33]

ScottM C, ChenC C, MecklenburgM, ZhuC, XuR, ErciusP, DahmenU, ReganB C, MiaoJNature, 2012, 483: 444.

[34]

MoniriS, YangY, DingJ, YuanY, ZhouJ, YangL, ZhuF, LiaoY, YaoY, HuL, ErciusP, MiaoJNature, 2023, 624: 564.

[35]

YuanY, KimD S, ZhouJ, ChangD J, ZhuF, NagaokaY, YangY, PhamM, OsherS J, ChenO, ErciusP, SchmidA K, MiaoJNat. Mater., 2022, 21: 95.

[36]

NakaneT, KotechaA, SenteA, McMullanG, MasiulisS, BrownP M G E, GrigorasI T, MalinauskaiteL, MalinauskasT, MiehlingJ, UchanskiT, YuL, KariaD, PechnikovaE V, de JongE, KeizerJ, BischoffM, McCormackJ, TiemeijerP, HardwickS W, ChirgadzeD Y, MurshudovG, AricescuA R, ScheresS H WNature, 2020, 587: 152.

[37]

YipK M, FischerN, PakniaE, ChariA, StarkHNature, 2020, 587: 157.

[38]

LyumkisDJ. Biol. Chem., 2019, 294: 5181.

[39]

KüçükoǧluB, MohammedI, Guerrero-FerreiraR C, RibetS M, VarnavidesG, LeidlM L, LauK, NazarovS, MyasnikovA, KubeM, RadeckeJ, SachseC, Müller-CasparyK, OphusC, StahlbergHNat. Commun., 2024, 15: 8062.

[40]

RöslerC, AijazA, TurnerS, FilippousiM, ShahabiA, XiaW, van TendelooG, MuhlerM, FischerR AChem. Eur. J., 2016, 22: 3304.

[41]

BentzK C, GnanasekaranK, BaileyJ B, AyalaS, TezcanF A, GianneschiN C, CohenS MChem. Sci., 2020, 11: 10523.

[42]

SunH, YamamotoKCell Rep. Phys. Sci., 2024, 5: 101839.

[43]

MaignéA, WolfMMicroscopy, 2018, 67: 86.

[44]

HartJ L, LangA C, LeffA C, LongoP, TrevorC, TwestenR D, TaheriM LSci. Rep., 2017, 7: 8243.

[45]

Plotkin-SwingB, CorbinG J, de CarloS, DellbyN, HoermannC, HoffmanM V, LovejoyT C, MeyerC E, MittelbergerA, PantelicR, PiazzaL, KrivanekO LUltramicroscopy, 2020, 217: 113067.

[46]

SongK, LiuL, ZhangD, HautzingerM P, JinS, HanYAdv. Energy Mater., 2020, 10: 1904006.

[47]

SchwartzJ, DiZ W, JiangY, ManassaJ, PietrygaJ, QianY, ChoM G, RowellJ L, ZhengH, RobinsonR D, GuJ, KirilinA, RozeveldS, ErciusP, FesslerJ A, XuT, ScottM, HovdenRNat. Commun., 2024, 15: 3555.

[48]

RadonJAkad. Wiss., 1917, 69: 16

[49]

BracewellR NAust. J. Phys., 1956, 9: 198.

[50]

de RosierD J, KlugANature, 1968, 217: 130.

[51]

HataS, SatoK, MurayamaM, TsuchiyamaT, NakashimaHISIJ Int., 2015, 55: 623.

[52]

HanY, JangJ, ChaE, LeeJ, ChungH, JeongM, KimT G, ChaeB G, KimH G, JunS, HwangS, LeeE, YeJ CNat. Mach. Intell., 2021, 3: 267.

[53]

PryorA, YangY, RanaA, Gallagher-JonesM, ZhouJ, LoY H, MelinteG, ChiuW, RodriguezJ A, MiaoJSci. Rep., 2017, 7: 10409.

[54]

ChenM, BellJ M, ShiX, SunS Y, WangZ, LudtkeS JNat. Methods, 2019, 16: 1161.

[55]

LiuY, PenczekP A, McEwenB F, FrankJUltramicroscopy, 1995, 58: 393.

[56]

GorisB, de BeenhouwerJ, de BackerA, ZanagaD, BatenburgK J, Sánchez-IglesiasA, Liz-MarzánL M, van AertS, BalsS, SijbersJ, van TendelooGNano Lett., 2015, 15: 6996.

[57]

RadermacherMIn Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell, 2006New YorkSpringer245.

[58]

KakA C, SlaneyMPrinciples of Computerized Tomographic Imaging, 2001PhiladelphiaSociety for Industrial and Applied Mathematics.

[59]

GordonR, BenderR, HermanG TJ. Theor. Biol., 1970, 29: 471.

[60]

GilbertPJ. Theor. Biol., 1972, 36: 105.

[61]

MiaoJ, FörsterF, LeviOPhys. Rev. B, 2005, 72: 052103.

[62]

HegerlR, HoppeWZ. Naturforsch. A, 1976, 31: 1717.

[63]

McEwenB F, MarkoM, HsiehC-E, MannellaCJ. Struct. Biol., 2002, 138: 47.

[64]

Koster A. J., Ziese U., Verkleij A. J., Janssen A. H., de Graaf J., Geus J. W., de Jong K. P., Stud. Surf. Sci. Catal., 2000, 329.

[65]

FriedrichH, de JonghP E, VerkleijA J, de JongK PChem. Rev., 2009, 109: 1613.

[66]

WeylandM, MidgleyP A, ThomasJ MJ. Phys. Chem. B, 2001, 105: 7882.

[67]

ZečevićJ, van der EerdenA M J, FriedrichH, de JonghP E, de JongK PACS Nano, 2013, 7: 3698.

[68]

HugenschmidtM, JannisD, KaduA A, GrünewaldL, De MarchiS, Pérez-JusteJ, VerbeeckJ, van AertS, BalsSACS Mater. Lett., 2023, 6: 165.

[69]

CraigT M, KaduA A, BatenburgK J, BalsSNanoscale, 2023, 15: 5391.

[70]

ChangQ, YangD, ZhangX, OuZ, KimJ, LiangT, ChenJ, ChengS, ChengL, GeB, AngE H, XiangH, LiM, SongXNanoscale, 2023, 15: 13718.

[71]

VanrompayH, BladtE, AlbrechtW, BéchéA, ZakhozhevaM, Sánchez-IglesiasA, Liz-MarzánL M, BalsSNanoscale, 2018, 10: 22792.

[72]

AlbrechtW, BalsSJ. Phys. Chem. C, 2020, 124: 27276.

[73]

CollinsS M, MidgleyP AUltramicroscopy, 2017, 180: 133.

[74]

MaoL, CuiJ, YuRSci. Bull., 2024, 70: 64.

[75]

BladtE, PeltD M, BalsS, BatenburgK JUltramicroscopy, 2015, 158: 81.

[76]

JenkinsonK, Liz-MarzánL M, BalsSAdv. Mater., 2022, 34: 2110394.

[77]

LiuY T, ZhangH, WangH, TaoC L, BiG Q, ZhouZ HNat. Commun., 2022, 13: 6482.

[78]

YaoL, LyuZ, LiJ, ChenQNPJ Comput. Mater., 2024, 10: 28.

[79]

WangC, DingG, LiuY, XinH LAdv. Intell. Syst, 2020, 2: 2000152.

[80]

LiakakosN, GatelC, BlonT, AltantzisT, Lentijo-MozoS, Garcia-MarcelotC, LacroixL M, RespaudM, BalsS, Van TendelooG, SoulanticaKNano Lett., 2014, 14: 2747.

[81]

LinR, HuE, LiuM, WangY, ChengH, WuJ, ZhengJ-C, WuQ, BakS, TongX, ZhangR, YangW, PerssonK A, YuX, YangX Q, XinH LNat. Commun., 2019, 10: 1650.

[82]

SchwartzJImaging 3D Chemistry and Structure at Nanometer Resolution, 2023MichiganUniversity of Michigan

[83]

YuanY, MacArthurK E, CollinsS M, BroduschN, VoisardF, Dunin-BorkowskiR E, GauvinRUltramicroscopy, 2021, 220: 113166.

[84]

HuangK, SunY, ZhangY, WangX, ZhangW, FengSAdv. Mater., 2019, 31: 1801430.

[85]

ZhuW, ChenZ, PanY, DaiR, WuY, ZhuangZ, WangD, PengQ, ChenC, LiYAdv. Mater., 2019, 31: 1800426.

[86]

GorisB, PolavarapuL, BalsS, Van TendelooG, Liz-MarzánL MNano Lett., 2014, 14: 3220.

[87]

PolavarapuL, ZanagaD, AltantzisT, Rodal-CedeiraS, Pastoriza-SantosI, Pérez-JusteJ, BalsS, Liz-MarzánL MJ. Am. Chem. Soc., 2016, 138: 11453.

[88]

SlaterT J A, MacedoA, SchroederS L M, BurkeM G, O’BrienP, CamargoP H C, HaighS JNano Lett., 2014, 14: 1921.

[89]

ZanagaD, AltantzisT, PolavarapuL, Liz-MarzánL M, FreitagB, BalsSPart. Part. Syst. Charact., 2016, 33: 396.

[90]

YeohC S M, RossouwD, SaghiZ, BurdetP, LearyR K, MidgleyP AMicrosc. Microanal., 2015, 21: 759.

[91]

SlaterT, ChenY, AutonG, ZaluzecN, HaighSMicrosc. Microanal., 2016, 22: 440.

[92]

CollinsS M, MacArthurK E, LongleyL, ToveyR, BenningM, SchönliebC-B, BennettT D, MidgleyP AAPL Mater., 2019, 7: 091111.

[93]

HaberfehlnerG, OrthackerA, AlbuM, LiJ, KothleitnerGNanoscale, 2014, 6: 14563.

[94]

GorisB, TurnerS, BalsS, van TendelooGACS Nano, 2014, 8: 10878.

[95]

YedraL, EljarratA, ArenalR, Löpez-ConesaL, PellicerE, Löpez-OrtegaA, EstraderM, SortJ, BaröM D, EstradeS, PeiröFAnalyst, 2016, 141: 4968.

[96]

TorruellaP, ArenalR, de la PenaF, SaghiZ, YedraL, EljarratA, Löpez-ConesaL, EstraderM, Löpez-OrtegaA, Salazar-AlvarezG, NoguésJ, DucatiC, MidgleyP A, PeiröF, EstradeSNano Lett., 2016, 16: 5068.

[97]

LiuL M, WangN, ZhuC Z, LiuX N, ZhuY H, GuoP, AlfilfilL, DongX L, ZhangD L, HanYAngew. Chem. Int. Ed., 2020, 59: 819.

[98]

XiongH, WangH, ChenX, WeiFACS Cata., 2023, 13: 12213.

[99]

ChiH Y, ChenC, ZhaoK, VillalobosL F, SchouwinkP A, PiveteauL, MarshallK P, LiuQ, HanY, AgrawalK VAngew. Chem. Int. Ed., 2022, 61: e202207457.

[100]

LiuL, ChenZ, WangJ, ZhangD, ZhuY, LingS, HuangK W, BelmabkhoutY, AdilK, ZhangY, SlaterB, EddaoudiM, HanYNat. Chem., 2019, 11: 622.

[101]

ShenB, ChenX, ShenK, XiongH, WeiFNat. Commun., 2020, 11: 2692.

[102]

EstebanD A, VanrompayH, SkorikovA, BéchéA, VerbeeckJ, FreitagB, BalsSMicrosc. Microanal., 2021, 27: 2116.

[103]

PelzP M, GriffinS M, StonemeyerS, PoppleD, deVyldereH, ErciusP, ZettlA, ScottM C, OphusCNat. Commun., 2023, 14: 7906.

[104]

YouS, RomanovA, PelzPPhys. Scr., 2024, 100: 015404.

[105]

ZhangH, LiG, ZhangJ, ZhangD, ChenZ, LiuX, GuoP, ZhuY, ChenC, LiuL, GuoX, HanYScience, 2023, 380: 633.

[106]

LiG, ZhangH, HanYACS Cent. Sci., 2022, 8: 1579.

[107]

YuR, ShaH, CuiJ, YangWMicrostructures, 2024, 4: 2024056

[108]

OphusCMicrosc. Microanal., 2019, 25: 563.

[109]

ChenZ, JiangY, ShaoY-T, HoltzM E, OdstrčilM, Guizar-SicairosM, HankeI, GanschowS, SchlomD G, MullerD AScience, 2021, 372: 826.

[110]

JiangY, ChenZ, HanY, DebP, GaoH, XieS, PurohitP, TateM W, ParkJ, GrunerS M, ElserV, MullerD ANature, 2018, 559: 343.

[111]

DingZ, GaoS, FangW, HuangC, ZhouL, PeiX, LiuX, PanX, FanC, KirklandA I, WangPNat. Commun., 2022, 13: 4787.

[112]

LiG, XuM, TangW Q, LiuY, ChenC, ZhangD, LiuL, NingS, ZhangH, GuZ Y, LaiZ, MullerA D, HanYNat. Commun., 2025, 16: 914.

[113]

SadriA, PetersenT C, Terzoudis-LumsdenE W C, EsserB D, EtheridgeJ, FindlayS DNPJ Comput. Mater., 2024, 10: 243.

[114]

JacobM, SorelJ, PinhieroR B, MazenF, GrenierA, EpicierT, SaghiZSemicond. Sci. Technol., 2021, 36: 035006.

[115]

SegawaY, NakamuraA, HashiguchiH, KohnoY, OhtaS, SekiT, ShibataNBIO Web Conf., 2024, 129: 04038.

[116]

LongoP, TopuriaT, RiceP, AitouchenA, ThomasP J, TwestenR DMicrosc. Microanal., 2014, 20: 128.

[117]

LahatD, AdaliT, JuttenCProc. IEEE, 2015, 103: 1449.

[118]

ZhongZ, GorisB, SchoenmakersR, BalsS, BatenburgK JUltramicroscopy, 2017, 174: 35.

[119]

GuoY, AveyardR, RiegerBIEEE Trans. Image Process, 2019, 28: 4206.

[120]

HuberR, HaberfehlnerG, HollerM, KothleitnerG, BrediesKNanoscale, 2019, 11: 5617.

[121]

ChangD J, KimD S, RanaA, TianX, ZhouJ, ErciusP, MiaoJPhys. Rev. B, 2020, 102: 174101.

[122]

LiP, MaidenASci. Rep., 2018, 8: 2049.

[123]

SongB, DingZ, AllenC S, SawadaH, ZhangF, PanX, WarnerJ, KirklandA I, WangPPhys. Rev. Lett., 2018, 121: 146101.

[124]

SaderK, SchafferB, VaughanG, BrydsonR, BrownA, BlelochAUltramicroscopy, 2010, 110: 998.

[125]

ZhongZ, PalenstijnW J, AdlerJ, BatenburgK JUltramicroscopy, 2018, 191: 34.

[126]

SkorikovA, HeyvaertW, AlbechtW, PeltD M, BalsSNanoscale, 2021, 13: 12242.

[127]

ChaE, ChungH, JangJ, LeeJ, LeeE, YeJ CACS Nano, 2022, 16: 10314.

[128]

AzubelM, KoivistoJ, MalolaS, BushnellD, HuraG L, KohA L, TsunoyamaH, TsukudaT, PetterssonM, HäkkinenH, KornbergR DScience, 2014, 345: 909.

[129]

KimB H, HeoJ, KimS, ReboulC F, ChunH, KangD, BaeH, HyunH, LimJ, LeeH, HanB, HyeonT, AlivisatosA P, ErciusP, ElmlundH, ParkJScience, 2020, 368: 60.

[130]

Zhang H., Li X., Liu J., Lan Y.-Q., Han Y., Adv. Mater., 2024, 2406914.

[131]

WangY C, SlaterT J A, LetebaG M, RosemanA M, RaceC P, YoungN P, KirklandA I, LangC I, HaighS JNano Lett., 2019, 19: 732.

[132]

Pfeil-Gardiner O., Rosa H. V. D., Riedel D., Chen Y. S., Lörks D., Kükelhan P., Linck M., Müller H., Van Petegem F., Murphy B. J., bioRxiv, 2024, 2024.2001.2018.575858.

[133]

LiY, HuangW, LiY, ChiuW, CuiYACS Nano, 2020, 14: 9263.

[134]

ZhouJ, WeiN, ZhangD, WangY, LiJ, ZhengX, WangJ, AlsalloumA Y, LiuL, BakrO M, HanYJ. Am. Chem. Soc., 2022, 144: 3182.

[135]

SalihS M, CosslettV EPhilos. Mag., 1974, 30: 225.

[136]

LiuJ, SongK, ZhengX, YinJ, YaoK X, ChenC, YangH, HedhiliM N, ZhangW, HanP, MohammedO F, HanY, BakrO MJ. Phys. Chem. Lett., 2021, 12: 10402.

[137]

EladN, BellapadronaG, HoubenL, SagiI, ElbaumMProc. Nat. Acad. Sci., 2017, 114: 11139.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

354

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/