Water-stable Metal-Organic Framework for Hyperpolarized Xenon MRI in Aqueous Solution

Qingbin Zeng , Zhen Wang , Qianni Guo , Wei Song , Xiuchao Zhao , Yuqi Yang , Xin Zhou

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 305 -312.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 305 -312. DOI: 10.1007/s40242-025-4234-6
Article

Water-stable Metal-Organic Framework for Hyperpolarized Xenon MRI in Aqueous Solution

Author information +
History +
PDF

Abstract

Hyperpolarized 129Xe magnetic resonance imaging (MRI) is a powerful tool for detecting respiratory system diseases. However, 129Xe is an inert gas and lacks specific detection capability. Entrapping xenon within molecular cages to enable specific detection is a challenging task, and numerous molecular cages have been developed and evaluated to address this challenge. Herein, we report that the aluminum-based metal-organic framework, CAU-1, can effectively entrap xenon for hyperpolarized 129Xe MRI in aqueous solutions. This platform exhibits high water stability and good dispersibility, and shows excellent xenon entrapment capability, even at a concentration as low as 50 µg/mL. Importantly, it is responsive to pH changes across a range from 6.6 to 5.0, making it promising for monitoring the weakly acidic environment in tumors or metabolic abnormality. Furthermore, the scalable and cost-effective production of this molecular cage will facilitate future advancements in molecular imaging and chemical sensing applications.

Keywords

Metal-organic framework (MOF) / Hyperpolarization / Magnetic resonance imaging (MRI) / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Qingbin Zeng, Zhen Wang, Qianni Guo, Wei Song, Xiuchao Zhao, Yuqi Yang, Xin Zhou. Water-stable Metal-Organic Framework for Hyperpolarized Xenon MRI in Aqueous Solution. Chemical Research in Chinese Universities, 2025, 41(2): 305-312 DOI:10.1007/s40242-025-4234-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WiebelhausN, SinghN, ZhangP, CraigS L, BeratanD N, FitzgeraldM CJ. Am. Chem. Soc., 2022, 144: 3925.

[2]

BlobelJ, SchmidlS, VidalD, NisiusL, BernadóP, MilletO, BrunnerE, PonsMJ. Am. Chem. Soc., 2007, 129: 5946.

[3]

DuboisL, SilvaP D, LandonC, HuberJ G, PonchetM, VovelleF, BerthaultP, DesvauxHJ. Am. Chem. Soc., 2004, 126: 15738.

[4]

LiJ, LéonceE, CoutellierC, BoutinC, ChighineK, RivronC, DavidsonA, BerthaultPAnal. Chem., 2024, 96: 9430.

[5]

MailhiotS E, PeuravaaraP, EglestonB D, KearseyR J, MarešJ, KomulainenS, SelentA, KantolaA M, CooperA I, VaaraJ, GreenawayR L, LanttoP, TelkkiV-VJ. Phys. Chem. Lett., 2024, 15: 5323.

[6]

ZhouB, KomulainenS, VaaraJ, TelkkiV-VMicropor. Mesopor. Mater., 2017, 253: 49.

[7]

MuglerJ P, AltesT AJ. Magn. Reson. Imaging, 2013, 37: 313.

[8]

LiH, ZhaoX, WangY, LouX, ChenS, DengH, ShiL, XieJ, TangD, ZhaoJ, BouchardL-S, XiaL, ZhouXSci. Adv., 2021, 7: eabc8180.

[9]

FangY, LiH, ShenL, ZhangM, LuoM, LiH, RaoQ, ChenQ, LiY, LiZ, ZhaoX, ShiL, ZhouQ, HanY, GuoF, ZhouXMagn. Reson. Med., 2024, 92: 956.

[10]

RaoQ, LiH, ZhouQ, ZhangM, ZhaoX, ShiL, XieJ, FanL, HanY, GuoF, LiuS, ZhouXEur. Radiol., 2024, 34: 7450.

[11]

ZhouQ, RaoQ, LiH, ZhangM, ZhaoX, ShiL, YeC, ZhouXMagn. Reson. Lett., 2021, 1: 2.

[12]

ShepelytskyiY, GrynkoV, LiT, HassanA, GranbergK, AlbertM SMagn. Reson. Med., 2021, 86: 3147.

[13]

FriedlanderY, ZanetteB, LindenmaierA, LiD, KadlecekS, SantyrG, KassnerAMagn. Reson. Med., 2022, 87: 1971.

[14]

CollierG J, SchulteR F, RaoM, NorquayG, BallJ, WildJ MMagn. Reson. Med., 2023, 89: 2217.

[15]

Yang Y., Yue S., Shen L., Dong H., Li H., Zhao X., Guo Q., Zhou X., Adv. Sci., 2025, https://doi.org/10.1002/advs.202413426.

[16]

SpenceM M, RubinS M, DimitrovI E, RuizE J, WemmerD E, PinesA, YaoS, TianF, SchultzP GProc. Natl. Acad. Sci. USA, 2001, 98: 10654.

[17]

KunthM, WitteC, HennigA, SchröderLChem. Sci., 2015, 6: 6069.

[18]

StevensT K, RamirezR M, PinesAJ. Am. Chem. Soc., 2013, 135: 9576.

[19]

ShapiroM G, RamirezR M, SperlingL J, SunG, SunJ, PinesA, SchafferD V, BajajV SNat. Chem., 2014, 6: 630.

[20]

WangY, RooseB W, PalovcakE J, CarnevaleV, DmochowskiI JAngew. Chem. Int. Ed., 2016, 55: 8984.

[21]

RoukalaJ, ZhuJ, GiriC, RissanenK, LanttoP, TelkkiV-VJ. Am. Chem. Soc., 2015, 137: 2464.

[22]

ZhangX, YangY, YuanY, YueS, ZhaoX, YueQ, ZengQ, GuoQ, ZhouXAnal. Chem., 2024, 96: 10152.

[23]

SchnurrM, JosephR, Naugolny-KeisarA, Kaizerman-KaneD, BogdanoffN, SchuenkeP, CohenY, SchröderLChemPhysChem, 2019, 20: 246.

[24]

ShepelytskyiY, GrynkoV, BatarchukV, HasselbrinkC L, KovacsA H, RusetI C, RodriguezK, TaradehN A, TalwarT, DeBoefB, AlbertM SACS Sensors, 2023, 8: 4707.

[25]

KimD W, JungM, ShinD Y, KimN, ParkJ, LeeJ-H, OhH, HongC SChem. Engineer. J., 2024, 489: 151500.

[26]

YuB, TaoY, YaoX, JinY, LiuS, XuT, WangH, WuH, ZhouW, ZhouX, DingX, WangX, XiaoX, ZhangY, JiangJJ. Am. Chem. Soc., 2024, 146: 28932.

[27]

ZhangY, HanY, LuanB, WangL, YangW, JiangY, BenT, HeY, ChenBJ. Am. Chem. Soc., 2024, 146: 17220.

[28]

ChenZ, MianM R, LeeS-J, ChenH, ZhangX, KirlikovaliK O, ShuldaS, MelixP, RosenA S, ParillaP A, GennettT, SnurrR Q, IslamogluT, YildirimT, FarhaO KJ. Am. Chem. Soc., 2021, 143: 18838.

[29]

JonesN B, GibbonsB, MorrisA J, MorrisJ R, TroyaDACS Appl. Mater. Inter., 2022, 14: 8322.

[30]

ErdosyD P, WennyM B, ChoJ, DelReC, WalterM V, Jiménez-ÁngelesF, QiaoB, SanchezR, PengY, PolizzottiB D, CruzM O, MasonJ ANature, 2022, 608: 712.

[31]

PeiJ, GuX, LiangC, ChenB, LiB, QianGJ. Am. Chem. Soc., 2022, 144: 3200.

[32]

LiL, GuoL, ZhangZ, YangQ, YangY, BaoZ, RenQ, LiJJ. Am. Chem. Soc., 2019, 141: 9358.

[33]

GongW, XieY, PhamT D, ShettyS, SonF A, IdreesK B, ChenZ, XieH, LiuY, SnurrR Q, ChenB, AlameddineB, CuiY, FarhaO KJ. Am. Chem. Soc., 2022, 144: 3737.

[34]

BanerjeeD, SimonC M, PlonkaA M, MotkuriR K, LiuJ, ChenX, SmitB, PariseJ B, HaranczykM, ThallapallyP KNat. Commun., 2016, 7: 11831.

[35]

BunzenH, KolbeF, Kalytta-MewesA, SastreG, BrunnerE, VolkmerDJ. Am. Chem. Soc., 2018, 140: 10191.

[36]

ZengQ, BieB, GuoQ, YuanY, HanQ, HanX, ChenM, ZhangX, YangY, LiuM, LiuP, DengH, ZhouXProc. Natl. Acad. Sci. USA, 2020, 117: 17558.

[37]

YangY, ZhangY, WangB, GuoQ, YuanY, JiangW, ShiL, YangM, ChenS, LouX, ZhouXChem. Sci., 2021, 12: 4300.

[38]

AhnfeldtT, GuillouN, GunzelmannD, MargiolakiI, LoiseauT, FéreyG, SenkerJ, StockNAngew. Chem. Int. Ed., 2009, 48: 5163.

[39]

KemnitzerT W, TschenseC B L, WittmannT, RösslerE A, SenkerJLangmuir, 2018, 34: 12538.

[40]

ZhangJ, LiP, ZhangX, MaX, WangBACS Appl. Mater. Inter., 2020, 12: 46057.

[41]

SchröderL, LoweryT J, HiltyC, WemmerD E, PinesAScience, 2006, 314: 446.

[42]

YinH, WangJ, XieZ, YangJ, BaiJ, LuJ, ZhangY, YinD, LinJ YChem. Commun., 2014, 50: 3699.

[43]

RiggleB A, WangY, DmochowskiI JJ. Am. Chem. Soc., 2015, 137: 5542.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/