Insight from DFT Calculation on the Increasing Effect of the Cation-π Interaction on the Intramolecular Hydrogen Bond in Methyl Salicylate Complex with the Presence of Different Solvents

Fahimeh Alirezapour , Kourosh Bamdad , Yaghoob Babamir , Azadeh Khanmohammadi

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 545 -556.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (3) : 545 -556. DOI: 10.1007/s40242-025-4229-3
Article

Insight from DFT Calculation on the Increasing Effect of the Cation-π Interaction on the Intramolecular Hydrogen Bond in Methyl Salicylate Complex with the Presence of Different Solvents

Author information +
History +
PDF

Abstract

A comprehensive investigation is conducted in the present study to analyze the non-covalent interactions displayed by the methyl salicylate complex when exposed to various solvents. The density functional theory (DFT) method is utilized to explore the impact of cation-π interaction on the strength and characteristics of the intramolecular hydrogen bond (IMHB). The findings display an augmentation in the strength of cation-π interaction within the gas phase compared to the solution. The analyses of atoms in molecules (AIM) and the natural bond orbital (NBO) are employed to provide further information on the nature of the studied interactions. According to the findings, the HB present in the considered complex falls into the medium HBs category. In addition, our investigation indicates that the cation-π interaction reinforces the IMHB in diverse solvents, but the reverse is true for the gas phase. Finally, an evaluation of the electronic properties, stability, and reactivity of the complex is performed by investigating frontier molecular orbitals, such as energy gap, chemical hardness, and electronic chemical potential. The results of this study that are ubiquitous in biological systems may be useful for the design and synthesis of a variety of supramolecular complexes with the desired properties.

Keywords

Methyl salicylate / Cation-π / Intramolecular hydrogen bond / Atom in molecule (AIM) / Natural bond orbital (NBO) / Chemical Sciences / Inorganic Chemistry / Organic Chemistry / Physical Chemistry (incl. Structural) / Theoretical and Computational Chemistry

Cite this article

Download citation ▾
Fahimeh Alirezapour, Kourosh Bamdad, Yaghoob Babamir, Azadeh Khanmohammadi. Insight from DFT Calculation on the Increasing Effect of the Cation-π Interaction on the Intramolecular Hydrogen Bond in Methyl Salicylate Complex with the Presence of Different Solvents. Chemical Research in Chinese Universities, 2025, 41(3): 545-556 DOI:10.1007/s40242-025-4229-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DesaiR, GutierrezJ, CherukuriS V, GuzmanJ, DeokerACureus, 2021, 13: e20191

[2]

BarbarA, RaoufM, PlakogiannisF MPharm. Acta. Helv., 1990, 65: 170

[3]

MasudaRMasui., 2016, 65: 709

[4]

PengC, LiuY, ShuiL, ZhaoZ, MaoX, LiuZLife. (Basel), 2022, 12: 1581

[5]

FangY, BullockH, LeeS A, SekarN, EitemanM A, WhitmanW B, RamasamyR PBiosens. Bioelectron., 2016, 85: 603.

[6]

LohC C JNat. Rev. Chem., 2021, 5: 792.

[7]

DaasK J, FabianoE, Della SalaF, Gori-GiorgiP, VuckovicSJ. Phys. Chem. Lett., 2021, 12: 4867.

[8]

ShafiekhaniH, MostaghniF, Madadi MahaniNChem. Rev. Lett., 2024, 7: 404

[9]

ZranV E S, YobouetA Y, KouakouL P M S, TrokoureyA, Kouassi YaoB, DroguiPChem. Rev. Lett., 2022, 5: 178

[10]

AbdulmuminiH, Muhammad AyubaAChem. Rev. Lett., 2022, 5: 250

[11]

SenS, YoungJ, BerrisfordJ M, ChenM, ConroyM J, DuttaS, Di CostanzoL, GaoG, GhoshS, HudsonB P, IgarashiR, KengakuY, LiangY, PeisachE, PersikovaI, MukhopadhyayA, NarayananB C, SahniG, SatoJ, SekharanM, ShaoC, TanL, ZhuravlevaM ADatabase. (Oxford), 2014, 2014: bau116.

[12]

ElurbideJ, CarteB, GuedesJ, AldabeRInt. J. Mol. Sci., 2023, 24: 8724.

[13]

BhattaraiA, EmersonI AJ. Biosci., 2020, 45: 29.

[14]

VargasR, GarzaJ, MartínezA, IbarraI AChem. Commun., 2024, 60: 3008.

[15]

KhalidM, Usman KhanM, ShafiqI, HussainR, AliA, ImranM, BragaA A C, Fayyaz Ur RehmanM, Safwan AkramMR. Soc. Open Sci., 2021, 8: 210570.

[16]

KhalidM, ShafiqI, Umm-E-Hani, MahmoodK, HussainR, Fayyaz Ur RehmanM, AssiriM A, ImranM, Safwan AkramMSci. Rep., 2023, 13: 1395.

[17]

Adnan AsgharM, JabbarA, NadeemS, ShafiqI, TahirN, AlrashidiK AMat. Sci. Semicon. Proc., 2025, 186: 109086.

[18]

MehmoodH, KhalidM, HaroonM, AkhtarT, AshfaqM, TahirM N, Usman KhanM, ImranM, Carmo BragaA A, WoodwardSJ. Mol. Struct., 2021, 1245: 131043.

[19]

SalimM, RafiqM, El-BadryY A, KheraR A, KhalidM, IqbalJJ. Mol. Model., 2021, 27: 316.

[20]

JavedM, FarhatA, JabeenS, KheraR A, KhalidM, IqbalJComput. Theor. Chem., 2021, 1204: 113373.

[21]

PirgheibiM, MohammadiM, KhanmohammadiAComput. Theor. Chem., 2021, 1198: 113172.

[22]

PirgheibiM, MohammadiM, KhanmohammadiAStruct. Chem., 2021, 32: 1529.

[23]

Morad KarimM, Othman KattabN, BahirH, AdhabA H, KhanmohammadiAChem. Rev. Lett., 2024, 7: 2

[24]

AlirezapourF, MohammadiM, KhanmohammadiAChem. Rev. Lett., 2023, 6: 262

[25]

Javdani Zamani SaghebM, HokmabadyL, KhanmohammadiAChem. Rev. Lett., 2023, 6: 308

[26]

MohammadiM, HoseinpourF, KhanmohammadiATheor. Chem. Acc., 2022, 141: 38.

[27]

AlirezapourF, KhanmohammadiATheor. Chem. Acc., 2020, 139: 180.

[28]

Abdulkareem MahmoodE, Poor HeraviM R, KhanmohammadiA, Mohammadi AghdamS, EbadiA G, HabibzadehSJ. Mol. Model., 2022, 28: 297.

[29]

KhanmohammadiA, RavariFPhys. Chem. Res., 2017, 5: 57

[30]

MohammadiM, KhanmohammadiATheor. Chem. Acc., 2020, 139: 141.

[31]

WangC, MaC Y, HongR S, TurnerT D, RosbottomI, SheikhA Y, YinQ, RobertsK JMol. Pharmaceutics., 2024, 21: 3525.

[32]

PedroS N, FreireC S R, SilvestreA J D, FreireM GInt. J. Mol. Sci., 2020, 21: 8298.

[33]

Al-ShdefatR, HailatM, AlshogranO YDrug Dev. Ind. Pharm., 2022, 48: 12.

[34]

Kumar ShuklaM, TiwariH, VermaR, DongW L, AzizovS, KumarB, PandeyS, KumarDPharmaceutics., 2023, 15: 702.

[35]

PedroS N, FreireC S R, SilvestreA J D, FreireM GEncyclopedia, 2021, 1: 324.

[36]

Rama SwamyG, Vijaya KumarN, ManikandanG, Prudhvi RajuNChem. Rev. Lett., 2023, 6: 506

[37]

SrinidhiChem. Rev. Lett., 2022, 5: 141

[38]

Noruzy MoghadamH, BanaeiAChem. Rev. Lett., 2022, 5: 169

[39]

FrischM J, TrucksG W, SchlegelH B, ScuseriaG E, RobbM A, CheesemanJ R, ScalmaniG, BaroneV, MennucciB, Peters-SonG A, NakatsujiH, CaricatoM, LiX, HratchianH P, Izmay-LovA F, BloinoJ, ZhengG, SonnenbergJ L, HadaM, EharaM, ToyotaK, FukudaR, HasegawaJ, IshidaM, NakajimaT, HondaY, KitaoO, NakaiH, VrevenT, MontgomeryJ AJr., PeraltaJ E, OgliaroF, BearparkM, HeydJ J, BrothersE, KudinK N, Staro-VerovV N, KobayashiR, NormandJ, RaghavachariK, RendellA, BurantJ C, IyengarS S, TomasiJ, CossiM, RegaN, MillamJ M, KleneM, KnoxJ E, CrossJ B, BakkenV, AdamoC, Jara-MilloJ, GompertsR, StratmannR E, YazyevO, AustinA J, CammiR, PomelliC, OchterskiJ W, MartinR L, MorokumaK, ZakrzewskiV G, VothG A, SalvadorP, DannenbergJ J, DapprichS, DanielsA D, FarkasÖ, ForesmanJ B, OrtizJ V, CioslowskiJ, FoxD JGaussian 09 (Revision A.02), 2009Wallingford CTGaussian, Inc.

[40]

ChaiJ D, Head-GordonMPhys. Chem. Chem. Phys., 2008, 10: 6615.

[41]

FrischM J, PopleJ A, BinkleyJ SJ. Chem. Phys., 1984, 80: 3265.

[42]

IikuraH, TsunedaT, YanaiT, HiraoKJ. Chem. Phys., 2001, 115: 3540.

[43]

SavinA, FladH JInt. J. Quantum Chem., 1995, 56: 327.

[44]

ChaiJ D, Head-GordonMJ, Chem. Phys., 2008, 128: 084106.

[45]

Doust MohammadiM, AbdullahH Y, BiskosG, BhowmickSC. R. Chimie., 2021, 24: 291.

[46]

MiertusS, ScroccoE, TomasiJChem. Phys., 1981, 55: 117.

[47]

EspinosaE, MolinsEJ. Chem. Phys., 2000, 113: 5686.

[48]

BoysS F, BernardiFMol. Phys., 2002, 19: 553.

[49]

Biegler KönigF, SchönbohmJJ. Comput. Chem., 2002, 23: 1489.

[50]

BaderR F WAtoms in molecules: a quantum theory, 1990OxfordOxford University Press.

[51]

FosterJ P, WeinholdFJ. Am. Chem. Soc., 1980, 102: 7211.

[52]

GlendeningE, ReedA, CarpenterJ, WeinholdFNBO Program, 2001MadisonUniversity of WisconsinVersion 3.1.

[53]

LuT, ChenFJ. Comput. Chem., 2012, 33: 580.

[54]

HumphreyW, DalkeA, SchultenKJ. Mol. Graph., 1996, 14: 33.

[55]

MohammadiM, MahinianM, KhanmohammadiAChem. Res. Chinese Universities, 2022, 38: 1414.

[56]

MolinaJ M, DobadoJ A, MelchorSJ. Mol. Struct. (Theochem), 2002, 589/590: 337.

[57]

SouriM, KhanmohammadiAJ. Mol. Liq., 2017, 230: 169.

[58]

BahirH, MohammedS K, Mohammed IbrahimA, Adhab HusseinA, KhanmohammadiAChem. Rev. Lett., 2023, 6: 479

[59]

HobzaP, SponerJChem. Rev., 1999, 99: 3247.

[60]

AlirezapourF, KhanmohammadiAActa. Crystallogr. Sect. C, Struct. Chem., 2020, C76: 982.

[61]

PearsonR GChemical Hardness-applications from Molecules to Solids, 1997WeinheimVCH-Wiley

[62]

ChattarajP K, PoddarAJ. Phys. Chem. A, 1999, 103: 8691.

[63]

ParrR G, SzentpályL V, LiuSJ. Am. Chem. Soc., 1999, 121: 1922.

[64]

SenK D, JorgensenC KElectronegativity, Structure and Bonding, 1987New YorkSpringer

[65]

Abd Al-Sattar DawoodA, Abdul HusseinA H, Al-ShamiK R, AziziB, ThabitR, HebaaM H, Obaid kareemRChem. Rev. Lett., 2024, 7: 373

[66]

KoopmansTPhysica., 1933, 1: 104.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/