Advanced Aberration-corrected STEM Techniques for Atomic Imaging of Zeolites-confined Single Molecules: From Ex situ to In situ

Guowei Wang , Hao Xiong , Fei Wei , Xiao Chen

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 196 -210.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (2) : 196 -210. DOI: 10.1007/s40242-024-4222-2
Review

Advanced Aberration-corrected STEM Techniques for Atomic Imaging of Zeolites-confined Single Molecules: From Ex situ to In situ

Author information +
History +
PDF

Abstract

Zeolites are a class of inorganic microporous crystalline materials with ordered pore channels, unique shape selectivity, adjustable acidity and alkalinity, and high stability and have been widely used in gas adsorption and heterogeneous catalysis. The size of the zeolite pore structure determines its molecular sieving properties. Therefore, flexibly adjusting the zeolite pore structure and the host-guest interactions with guest molecules to control diffusion or reaction pathways is crucial for designing novel zeolites. Observing the real movement behavior of small molecules and changes in the local structure of the zeolite framework at the micro-nano scale is of great significance. Recently, emerging scanning transmission electron microscopy (STEM) imaging techniques, such as integrated differential phase contrast/optimum bright-field STEM (iDPC/OBF-STEM) and 4D-STEM ptychography have shown great potential for atomic resolution characterization of zeolites, since these are greatly advantageous for imaging electron beam-sensitive materials and light elements. This review first introduces the structural characteristics and applications of zeolites. Secondly, we discuss the application of three emerging imaging techniques in atomic imaging of zeolites. Thirdly, we focus on using iDPC-STEM imaging technology to observe the host-guest interactions between zeolites and single molecules (e.g., benzene, p-xylene, and pyridine). Furthermore, we explore the adsorption-desorption behavior of single molecules in zeolites using in situ iDPC-STEM imaging technology. Finally, we discuss the current challenges and future prospects of advanced TEM characterization techniques in the imaging of zeolite-confined single molecule.

Keywords

Zeolite / Integrated differential phase contrast/optimum bright-field STEM / 4D-STEM ptychography / Single-molecule imaging / In situ TEM / Chemical Sciences / Macromolecular and Materials Chemistry / Physical Chemistry (incl. Structural) / Physical Sciences / Other Physical Sciences

Cite this article

Download citation ▾
Guowei Wang, Hao Xiong, Fei Wei, Xiao Chen. Advanced Aberration-corrected STEM Techniques for Atomic Imaging of Zeolites-confined Single Molecules: From Ex situ to In situ. Chemical Research in Chinese Universities, 2025, 41(2): 196-210 DOI:10.1007/s40242-024-4222-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhouW, ChengK, KangJ, ZhouC, SubramanianV, ZhangQ, WangYChem. Soc. Rev., 2019, 48: 3193.

[2]

SunQ, XieZ, YuJNatl. Sci. Rev., 2018, 5: 542.

[3]

QinZ, LakissL, ToshevaL, GilsonJ P, VicenteA, FernandezC, ValtchevVAdv. Funct. Mater., 2014, 24: 257.

[4]

MartinezC, CormaACoord. Chem. Rev., 2011, 255: 1558.

[5]

ChuK, WangY, LiuW, BuL, HuangY, GuoN, QuL, SangJ, LiY, SuX, ZhangXChem. Res. Chinese Universities, 2024, 40: 1151.

[6]

LiuP, WuQ, ChenZ, XiaoFChem. Res. Chinese Universities, 2024, 40: 646.

[7]

QuZ, ZhangT, YinX, ZhangJ, XiongX, SunQChem. Res. Chinese Universities, 2023, 39: 870.

[8]

LiY, YuJ HChem. Rev., 2014, 114: 7268.

[9]

LiC, MolinerM, CormaAAngew. Chem. Int. Ed. Engl., 2018, 57: 15330.

[10]

SachseA, Garcia-MartinezJChem. Mater., 2017, 29: 3827.

[11]

DusselierM, DavisM EChem. Rev., 2018, 118: 5265.

[12]

LiJ, CormabA, YuJChem. Soc. Rev., 2015, 44: 7112.

[13]

PřechJ, PizarroP, SerranoD P, ČejkaJChem. Soc. Rev., 2018, 47: 8263.

[14]

BreckD WUnion Carbide CorporationCrystalline Zeolite Y., 1964US 3130007

[15]

WeitkampJSolid State Ionics, 2000, 131: 175.

[16]

ArgauerR J, LandoltG RMobil Oil CorporationCrystalline Zeolite ZSM-5 and Method of Preparing the Same, 1972US 3702886

[17]

CundyC S, CoxP AChem. Rev., 2003, 103: 663.

[18]

KoempelH, LiebnerWStudies in Surface Science and Catalysis, 2007, 167: 261.

[19]

TianP, WeiY, YeM, LiuZACS Catal., 2015, 5: 1922.

[20]

YangJ, PanX, JiaoF, LiJ, BaoXChem. Commun., 2017, 53: 11146.

[21]

ZhaoB, ZhaiP, WangP, LiJ, LiT, PengM, ZhaoM, HuG, YangY, LiY W, ZhangQ, FanW, MaDChem, 2017, 3: 323.

[22]

SuJ, ZhouH, LiuS, WangC, JiaoW, WangY, LiuC, YeY, ZhangL, ZhaoY, LiuH, WangD, YangW, XieZ, HeMNat. Commun., 2019, 10: 1297.

[23]

NiY, ChenZ, FuY, LiuY, ZhuW, LiuZNat. Commun., 2018, 9: 3457.

[24]

LiZ, QuY, WangJ, LiuH, LiM, MiaoS, LiCJoule, 2019, 3: 570.

[25]

WangS, ZhangL, ZhangW, WangP, QinZ, YanW, DongM, LiJ, WangJ, HeL, OlsbyeU, FanWChem, 2020, 6: 3344.

[26]

KimJ, KimW, SeoY, KimJ, RyooRJ. Catal., 2013, 301: 187.

[27]

HengsawadT, SrimingkwanchaiC, ButnarkS, ResascoD E, JongpatiwutSInd. Eng. Chem. Res., 2018, 57: 1429.

[28]

MengJ, LiC, ChenX, SongC, LiangCMicropor. Mesopor. Mater., 2020, 309: 110565.

[29]

YeX, SchmidtJ E, WangR P, van RavenhorstI K, OordR, ChenT, de GrootF, MeirerF, WeckhuysenB MAngew. Chem. Int. Ed., 2020, 59: 15610.

[30]

NegriC, SelleriT, BorfecchiaE, MartiniA, LomachenkoK A, JanssensT V W, CutiniM, BordigaS, BerlierGJ. Am. Chem. Soc., 2020, 142: 15884.

[31]

CsicseryS MZeolites, 1984, 4: 202.

[32]

SmitB, MaesenT LNature, 2008, 451: 671.

[33]

HawJ F, SongW, MarcusD M, NicholasJ BAcc. Chem. Res., 2003, 36: 317.

[34]

KärgerJ, VasenkovS, AuerbachS MHandbook of Zeolite Science and Technology, 2003Boca RatonCRC Press446

[35]

BhanA, IglesiaEAcc. Chem. Res., 2008, 41: 559.

[36]

KatadaN, SuzukiK, NodaT, SastreG, NiwaMJ. Phys. Chem. C, 2009, 113: 19208.

[37]

BnmnerG O, MeierW MNature, 1989, 337: 146.

[38]

BaerlocherC, McCuskerL B, OlsonD HAtlas of Zeolite Framework Types, 2007NetherlandsElsevier

[39]

BarrerR MZeolites, 1981, 1: 130.

[40]

LiJ, CormaA, YuJChem. Soc. Rev., 2015, 44: 7112.

[41]

LiY, YuJChem. Rev., 2014, 114: 7268.

[42]

WeiszP, FriletteVJ. Phys. Chem., 1960, 64: 382.

[43]

DerouaneE GStudies in Surface Science and Catalysis, 19805

[44]

HereijgersB P, BlekenF, NilsenM H, SvelleS, LillerudK P, BjørgenM, WeckhuysenB M, OlsbyeUJ. Catal., 2009, 264: 77.

[45]

ZhangJ, QianW, KongC, WeiFACS Catal., 2015, 5: 2982.

[46]

FraenkelD, LevyMJ. Catal., 1989, 118: 10.

[47]

ChenQ, LiuJ, YangBNat. Commun., 2021, 12: 3725.

[48]

MirthG, CejkaJ, LercherJJ. Catal., 1993, 139: 24.

[49]

QinZ, ShenB, YuZ, DengF, ZhaoL, ZhouS, YuanD, GaoX, WangB, ZhaoH, LiuHJ. Catal., 2013, 298: 102.

[50]

TarachK, Góra-MarekK, TeklaJ, BrylewskaK, DatkaJ, MlekodajK, MakowskiW, LópezM C I, TrigueroJ M, ReyFJ. Catal., 2014, 312: 46.

[51]

LinQ, GaoZ R, LinC, ZhangS, ChenJ, LiZ, LiuX, FanW, LiJ, ChenX, CamblorM A, ChenFScience, 2021, 374: 1605.

[52]

LiY, YuJChem. Rev., 2014, 114: 7268.

[53]

MorishitaS, IshikawaR, KohnoY, SawadaH, ShibataN, IkuharaYMicroscopy, 2018, 67: 46.

[54]

WangS X, WangL M, EwingR CJ. Nucl. Mater., 2000, 278: 233.

[55]

UgurluO, HausJ, GunawanA A, ThomasM G, MaheshwariS, TsapatsisM, MkhoyanK APhys. Rev. B, 2011, 83: 113408.

[56]

MenterJ WAdv. Phys., 1958, 7: 299.

[57]

BursillL A, LodgeE A, ThomasJ MNature, 1980, 286: 111.

[58]

HaiderM, UhlemannS, SchwanE, RoseH, KabiusB, UrbanKNature, 1998, 392: 768.

[59]

LiC, ZhangQ, MayoralAChemCatChem, 2020, 12: 1248.

[60]

O’LearyC M, AllenC S, HuangC, KimJ S, LibertiE, NellistP D, KirklandA IAppl. Phys. Lett., 2020, 116: 124101.

[61]

ShenB, ChenX, CaiD, XiongH, LiuX, MengC, HanY, WeiFAdv. Mater., 2020, 32: e1906103.

[62]

ZhouY, DongZ, TerasakiO, MaYAcc. Mater. Res., 2022, 3: 110.

[63]

WangL, JiangY, ZhouY, ShiR, HosokawaF, TerasakiO, ZhangQPart. Part. Syst. Charact., 2023, 40: 2200122.

[64]

ShenB, ChenX, ShenK, XiongH, WeiFNat. Commun., 2020, 11: 2692.

[65]

ShibataN, FindlayS D, KohnoY, SawadaH, KondoY, IkuharaYNat. Phys., 2012, 8: 611.

[66]

ShenB, ChenX, CaiD, XiongH, LiuX, MengC, HanY, WeiFAdv. Mater., 2020, 32: 1906103.

[67]

ShenB, ChenX, FanX, XiongH, WangH, QianW, WangY, WeiFNat. Commun., 2021, 12: 2212.

[68]

RoseHUltramicroscopy, 1977, 2: 251.

[69]

OoeK, SekiT, IkuharaY, ShibataNUltramicroscopy, 2021, 220: 113133.

[70]

ShenB, WangH, XiongH, ChenX, BoschE G T, LazicI, QianW, WeiFNature, 2022, 607: 703.

[71]

ShenB, ChenX, WangH, XiongH, BoschE G T, LazicI, CaiD, QianW, JinS, LiuX, HanY, WeiFNature, 2021, 592: 541.

[72]

XiongH, LiuZ, ChenX, WangH, QianW, ZhangC, ZhengA, WeiFScience, 2022, 376: 491.

[73]

OoeK, SekiT, YoshidaK, KohnoY, IkuharaY, ShibataNSci. Adv., 2023, 9: eadf6865.

[74]

ShamzhyM, OpanasenkoM, ConcepciónP, MartínezAChem. Soc. Rev., 2019, 48: 1095.

[75]

CorneliusM L U, PriceL, WellsS A, PetrikL F, SartbaevaAZeitschrift für Krist. Cryst. Mater., 2019, 234: 461.

[76]

MayoralA, ZhangQ, ZhouY, ChenP, MaY, MonjiT, LoschP, SchmidtW, SchüthF, HiraoH, YuJ, TerasakiOAngew. Chem. Int. Ed., 2020, 59: 19510.

[77]

HoppeWActa Cryst., 1969, 25: 495.

[78]

HoppeW, StrubeGActa Cryst., 1969, 25: 502.

[79]

HoppeWActa Cryst., 1969, 25: 508.

[80]

DongZ, ZhangE, JiangY, ZhangQ, MayoralA, JiangH, MaYJ. Am. Chem. Soc., 2023, 145: 6628.

[81]

ShaH, CuiJ, LiJ, ZhangY, YangW, LiY, YuRSci. Adv., 2023, 9: eadf1151.

[82]

ZhangH, LiG, ZhangJ, ZhangD, ChenZ, LiuX, GuoP, ZhuY, ChenC, LiuL, GuoX, HanYScience, 2023, 380: 633.

[83]

BhanA, IglesiaEAcc. Chem. Res., 2008, 41: 559.

[84]

KatadaN, SuzukiK, NodaT, SastreG, NiwaMJ. Phys. Chem. C, 2009, 113: 19208.

[85]

KokotailoG T, LawtonS L, OlsonD H, MeierW MNature, 1978, 272: 437.

[86]

LazicI, BoschE G T, LazarSUltramicroscopy, 2016, 160: 265.

[87]

LazićI, BoschE G TAdv. Imag. Elect. Phys., 2017, 199: 75.

[88]

YucelenE, LazicI, BoschE G TSci. Rep., 2018, 8: 2676.

[89]

JaeJ, TompsettG A, FosterA J, HammondK D, AuerbachS M, LoboR F, HuberG WJ. Catal., 2011, 279: 257.

[90]

BereciartuaP J, CantinÀ, CormaA, JordaJ L, PalominoM, ReyF, ValenclaS, CorcoranE WJr., KortunovP, RavikovitchP I, BurtonA, YoonC, WangY, PaurC, GuzmanJ, BishopA R, CastyG LScience, 2017, 358: 1068.

[91]

WangZ, LoboR F, LambrosJMicropor. Mesopor. Mater., 2003, 57: 1.

[92]

LiZ, JohnsonM C, SunM, RyanE T, EarlD J, MaichenW, MartinJ I, LiS, LewC M, WangJ, DeemM W, DavisM E, YanYAngew. Chem. Int. Ed., 2006, 45: 6329.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/