3D Printed Chitosan Bioink Loaded with Chrysin for Repairing Bone Defects

Hao Zhang, Wenshuo Tang, Xin Sui, Lingfeng Li, Hongpu Zhang, Yuran Li, Xueyi Zhang, Zhihui Liu, Bowei Wang

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 155-164.

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 155-164. DOI: 10.1007/s40242-024-4216-0
Article

3D Printed Chitosan Bioink Loaded with Chrysin for Repairing Bone Defects

Author information +
History +

Abstract

This study aimed to investigate the potential of chrysin (C) to induce osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in vitro. Chitosan (CS) was dissolved by repeated freeze-thawing of alkali/urea solutions, followed by co-printing of nano-hydroxyapatite (HAP) powders with different concentrations of C solutions (5, 10, and 20 µmol/L) compounded into CS solution. Its rheological properties were modified with acetic acid/gelatin solution to construct C-CS-HAP (C-CS-H) composite scaffolds by extrusion printing technology. Physicochemical characterization showed that the four groups of scaffolds had regularly interconnected porous structures with pore diameters of about 450–600 µm, and the novel bioink exhibited shear-thinning properties, with the viscosity of the material decreasing in the shear rates range of 0.01–1000 s−1 and thus good printability. The osteogenic differentiation ability of BMSCs was confirmed by the CCK-8 test, alkaline phosphatase (ALP) test, Alizarin Red staining (ARS) test, osteogenesis-related genes OCN, ALP, Runx 2, and bone morphogenetic protein-2 (BMP-2) test, which showed a significant promotion of the osteogenic differentiation ability of BMSCs with the increase of the content of C. The above results indicate the potential of C-CS-H composite scaffolds in osteogenesis.

Cite this article

Download citation ▾
Hao Zhang, Wenshuo Tang, Xin Sui, Lingfeng Li, Hongpu Zhang, Yuran Li, Xueyi Zhang, Zhihui Liu, Bowei Wang. 3D Printed Chitosan Bioink Loaded with Chrysin for Repairing Bone Defects. Chemical Research in Chinese Universities, 2024, 41(1): 155‒164 https://doi.org/10.1007/s40242-024-4216-0

References

[[1]]
Collins M N, Ren G, Young K, Pina S, Reis R L, Oliveira J M Adv. Funct. Mater., 2021, 31: 22.
CrossRef Google scholar
[[2]]
Chen Y, Li W L, Zhang C, Wu Z Y, Liu J Adv. Healthc. Mater., 2020, 9: 28
[[3]]
Feng P, Zhao R Y, Tang W M, Yang F, Tian H F, Peng S P, Pan H, Shuai C J Adv. Funct. Mater., 2023, 33: 29
[[4]]
Stompor-Goracy M, Bajek-Bil A, Machaczka M Nutrients, 2021, 13: 17.
CrossRef Google scholar
[[5]]
Zeng W F, Yan Y, Zhang F Y, Zhang C L, Liang W Protein & Cell., 2013, 4: 539.
CrossRef Google scholar
[[6]]
Huo J F, Zhang M L, Wang X X, Zou D H Exp. Cell Res., 2021, 400: 10.
CrossRef Google scholar
[[7]]
Li Y, Wang X M Drug Des. Dev. Ther., 2022, 16: 165.
CrossRef Google scholar
[[8]]
Gao S, Siddiqui N, Etim I, Du T, Zhang Y, Liang D Biomedicine & Pharmacotherapy, 2021, 142: 9.
CrossRef Google scholar
[[9]]
Boudemagh D, Venturini P, Fleutot S, Cleymand F Polym. Bull., 2019, 76: 2621.
CrossRef Google scholar
[[10]]
Wei L, Ma B-J, Shao J-L, Ge S-H Journal of Sichuan University, Medical Science Edition, 2021, 52: 357
[[11]]
Xu J Q, Zhang M Y, Du W Z, Zhao J H, Ling G X, Zhang P Int. J. Biol. Macromol., 2022, 219: 545.
CrossRef Google scholar
[[12]]
Lin H, Zhang L Y, Zhang Q Y, Wang Q, Wang X, Yan G Q Biomater. Sci., 2023, 11: 7034.
CrossRef Google scholar
[[13]]
El-Araby A, Janati W, Ullah R, Ercisli S, Errachidi F Front. Chem., 2024, 11: 21.
CrossRef Google scholar
[[14]]
Wei Z, Wan S K, Jia B, Cheng W H, Li M, Chen J, Liu Y W, Zhang H J, Liu K, Wang F Chem. Res. Chinese Universities, 2024, 40: 1011.
CrossRef Google scholar
[[15]]
Wang Z Y, Long F, Gao H L, Yu S H Chem. Res. Chinese Universities, 2023, 39: 109.
CrossRef Google scholar
[[16]]
Cao J F, You J, Zhang L N, Zhou J P Carbohydr. Polym., 2018, 185: 138.
CrossRef Google scholar
[[17]]
Xu D D, Huang J C, Zhao D, Ding B B, Zhang L, Cai J Adv. Mater., 2016, 28: 9667.
CrossRef Google scholar
[[18]]
Zhou L Y, Ramezani H, Sun M, Xie M J, Nie J, Lv S, Cai J, Fu J Z, He Y Biomater. Sci., 2020, 8: 5020.
CrossRef Google scholar
[[19]]
Liu S J, Li L Polymer, 2018, 141: 124.
CrossRef Google scholar
[[20]]
Wang C, Huang W, Zhou Y, He L B, He Z, Chen Z L, He X, Tian S, Liao J M, Lu B H, Wei Y, Wang M Bioact. Mater., 2020, 5: 82
[[21]]
Fu C H, Li D, Zhang J W, Guo W, Yang H, Zhao B, Chen Z M, Fu X, Liang Z Q, Jiang L Chem. Res. Chinese Universities, 2023, 39: 891.
CrossRef Google scholar
[[22]]
Zhang T, Zhao W, Xiahou Z, Wang X W, Zhang K X, Yin J B Appl. Mater. Today, 2021, 25: 19
[[23]]
Chen P, Liu L Y, Pan J Q, Mei J, Li C R, Zheng Y Y Mater. Sci. Eng. C: Mater. Biol. Appl., 2019, 97: 325.
CrossRef Google scholar
[[24]]
Zafeiris K, Brasinika D, Karatza A, Koumoulos E, Karoussis I K, Kyriakidou K, Charitidis C A Materials Science & Engineering C: Materials for Biological Applications, 2021, 119: 10.
CrossRef Google scholar
[[25]]
Kaparekar P S, Poddar N, Anandasadagopan S K Colloid Surf. B: Biointerfaces, 2021, 206: 12.
CrossRef Google scholar
[[26]]
Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T Biofabrication, 2017, 9: 18.
CrossRef Google scholar
[[27]]
Teixeira M C, Lameirinhas N S, Carvalho J P F, Silvestre A J D, Vilela C, Freire C S R Int. J. Mol. Sci., 2022, 23: 46
[[28]]
Zhao B B, Zhao M D, Li L M, Sun S X, Yu H P, Cheng Y, Yang Y D, Fan Y J, Sun Y Int. J. Mol. Sci., 2022, 23: 11
[[29]]
Fendi F, Abdullah B, Suryani S, Usman A N, Tahir D Bone, 2024, 183: 16.
CrossRef Google scholar
[[30]]
Amiryaghoubi N, Fathi M, Pesyan N N, Samiei M, Barar J, Omidi Y Med. Res. Rev., 2020, 40: 1833.
CrossRef Google scholar
[[31]]
Tajvar S, Hadjizadeh A, Samandari S S Int. Biodeterior. Biodegrad., 2023, 180: 13.
CrossRef Google scholar
[[32]]
Alipour M, Pouya B, Aghazadeh Z, SamadiKafil H, Ghorbani M, Alizadeh S, Aghazadeh M, Dalir Abdolahinia E Stem Cells International., 2021, 2021: 3828777.
CrossRef Google scholar
[[33]]
Sui X, Zhang H L, Yao J J, Yang L Q, Zhang X, Li L F, Wang J, Li M H, Liu Z H Biomed. Mater., 2023, 18: 12.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/