Synthesis and Photochromism of Diazocine Derivatives: Relationship Between Photoswitching Properties and Molecular Structures

Yaxin Wang, Yulan Chen

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 33-39.

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 33-39. DOI: 10.1007/s40242-024-4185-3
Article

Synthesis and Photochromism of Diazocine Derivatives: Relationship Between Photoswitching Properties and Molecular Structures

Author information +
History +

Abstract

We design and synthesize five novel diazocine derivatives, using diazocine as the core, amide or imine bonds as the connecting units attached with different peripheral substituents. The photoisomerization yield and thermal stability of these derivatives are tested by 1H NMR and UV-Vis absorption spectroscopy. Among them, the imine-linked derivative exhibits the lowest photoisomerization efficiency, while the amide-linked ones show an elevated switching efficiency in transitioning from the cis to the trans configuration, compared to the unmodified 3,3′-diamino-diazocine. Furthermore, based on experiments together with density functional theory (DFT) calculations, we find that the thermal stability of these derivatives is associated with the electron cloud density and steric hindrance of their substituents. Owing to these unique photophysical properties, diazocine derivatives provide a foundation for the development and application of molecular optical switches.

Cite this article

Download citation ▾
Yaxin Wang, Yulan Chen. Synthesis and Photochromism of Diazocine Derivatives: Relationship Between Photoswitching Properties and Molecular Structures. Chemical Research in Chinese Universities, 2024, 41(1): 33‒39 https://doi.org/10.1007/s40242-024-4185-3

References

[[1]]
Wang M, Nie C, Liu J, Wu S Nat. Commun., 2023, 14: 1000.
CrossRef Google scholar
[[2]]
Feng Y, Wei J, Qin L, Yu Y Soft. Matter, 2023, 19: 999.
CrossRef Google scholar
[[3]]
Zhao X, Chen Y, Peng B, Wei J, Yu Y L Angew. Chem. Int. Ed., 2023, 62: e202300699.
CrossRef Google scholar
[[4]]
Schultzke S, Puylaert P, Wang H, Schultzke I, Gerken J, Staubitz A Adv. Funct. Mater., 2024, 34: 2313268.
CrossRef Google scholar
[[5]]
Mukherjee A, Seyfried M, Ravoo B J Angew. Chem. Int. Ed., 2023, 62: e202304437.
CrossRef Google scholar
[[6]]
Larik F A, Fillbrook L L, Nurttila S S, Martin A D, Kuchel R P, Al Taief K, Bhadbhade M, Beves J E, Thordarson P Angew. Chem. Int. Ed., 2021, 60: 6764.
CrossRef Google scholar
[[7]]
van der Tol J J B, Engels T A P, Cardinaels R, Vantomme G, Meijer E W, Eisenreich F Adv. Funct. Mater., 2023, 33: 2301246.
CrossRef Google scholar
[[8]]
Li Y J, Wang M L, Wang F, Lu S, Chen X Q Smart Molecules., 2023, 1: e20220003.
CrossRef Google scholar
[[9]]
Wang Q W, Jiang L, Lam P L, Chui C H, Wong W Y Chem. Res. Chinese Universities, 2023, 39: 864.
CrossRef Google scholar
[[10]]
Jia X H, Sun P P, Liu A Q, Chen J X, Wang J Y, Zhang H, Zhu W C Chem. Res. Chinese Universities, 2023, 39: 680.
CrossRef Google scholar
[[11]]
Zhang T R, Yu H C, Wang W K, Bai P, Jin K Y, Zhang J N, Yan W F Chem. Res. Chinese Universities, 2022, 38: 1532.
CrossRef Google scholar
[[12]]
Cui X X, Shang L, Liu Z W, Liu Z T, Jiang J Q, Li G Chinese J. Polym. Sci., 2024, 42: 1470.
CrossRef Google scholar
[[13]]
Jiang C W, Xie R H, Li F L, Allen R E J. Phys. Chem. A, 2011, 115: 244.
CrossRef Google scholar
[[14]]
Gemen J, Church J R, Ruoko T P, Durandin N, Białek M J, Weißenfels M, Feller M, Kazes M, Odaybat M, Borin V A, Kalepu R, Diskin-Posner Y, Oron D, Fuchter M J, Priimagi A, Schapiro I, Klajn R Science, 2023, 381: 1357.
CrossRef Google scholar
[[15]]
Beharry A A, Sadovski O, Woolley G A J. Am. Chem. Soc., 2011, 133: 19684.
CrossRef Google scholar
[[16]]
Leistner A L, Kirchner S, Karcher J, Bantle T, Schulte M L, Godtel P, Fengler C, Pianowski Z L Chem. Eur. J., 2021, 27: 8094.
CrossRef Google scholar
[[17]]
Volaric J, Buter J, Schulte A M, van den Berg K O, Santamaria-Aranda E, Szymanski W, Feringa B L J. Org. Chem., 2022, 87: 14319.
CrossRef Google scholar
[[18]]
Wang H, Bisoyi H K, Zhang X, Hassan F, Li Q Chem. Eur. J., 2022, 28: e202103906.
CrossRef Google scholar
[[19]]
Hammerich M, Schutt C, Stahler C, Lentes P, Rohricht F, Hoppner R, Herges R J. Am. Chem. Soc., 2016, 138: 13111.
CrossRef Google scholar
[[20]]
Saha M, Ghosh S, Bandyopadhyay S New J. Chem., 2018, 42: 10784.
CrossRef Google scholar
[[21]]
Cabre G, Garrido-Charles A, Gonzalez-Lafont A, Moormann W, Langbehn D, Egea D, Lluch J M, Herges R, Alibes R, Busque F, Gorostiza P, Hernando J Org. Lett., 2019, 21: 3780.
CrossRef Google scholar
[[22]]
Lentes P, Stadler E, Rohricht F, Brahms A, Grobner J, Sonnichsen F D, Gescheidt G, Herges R J. Am. Chem. Soc., 2019, 141: 13592.
CrossRef Google scholar
[[23]]
Maier M S, Hull K, Reynders M, Matsuura B S, Leippe P, Ko T, Schaffer L, Trauner D J. Am. Chem. Soc., 2019, 141: 17295.
CrossRef Google scholar
[[24]]
Shen X, Zhang C, Lan F, Su Z, Zheng Y, Zheng T, Xiong Q, Xie X, Du G, Zhao X, Hu C, Deng P, Yu Z Angew. Chem. Int. Ed., 2022, 61: e202209441.
CrossRef Google scholar
[[25]]
Ewert J, Heintze L, Jorda-Redondo M, von Glasenapp J S, Nonell S, Bucher G, Peifer C, Herges R J. Am. Chem. Soc., 2022, 144: 15059.
CrossRef Google scholar
[[26]]
Lentes P, Fruhwirt P, Freissmuth H, Moormann W, Kruse F, Gescheidt G, Herges R J. Org. Chem., 2021, 86: 4355.
CrossRef Google scholar
[[27]]
Trauner D, Barber D, Klöcker N, Weaver D, Kozek K A, Görldt N, Fehrentz T, Laprell L, Matsuura B, Hüll K, Trads J Angew. Chem. Int. Ed., 2019, 58: 15421.
CrossRef Google scholar
[[28]]
Li S, Eleya N, Staubitz A Org. Lett., 2020, 22: 1624.
CrossRef Google scholar
[[29]]
Siewertsen R, Neumann H, Buchheim-Stehn B, Herges R, Nather C, Renth F, Temps F J. Am. Chem. Soc., 2009, 131: 15594.
CrossRef Google scholar
[[30]]
Sell H, Nather C, Herges R Beilstein J. Org. Chem., 2013, 9: 1.
CrossRef Google scholar
[[31]]
Li S, Han G, Zhang W Q Macromolecules, 2018, 51: 4290.
CrossRef Google scholar
[[32]]
Wang Y Y, Li M W, Yan C M, Ma N, Chen Y L CCS Chem., 2022, 4: 704.
CrossRef Google scholar
[[33]]
Dominguez-Candela I, Zulkhairi I, Pintre I, Aripin N F K, Lora-Garcia J, Fombuena V, Ros M B, Martinez-Felipe A J. Mater. Chem. C, 2022, 10: 18200.
CrossRef Google scholar
[[34]]
Le K V, Takezoe H, Araoka F Adv. Mater., 2017, 29: 1602737.
CrossRef Google scholar
[[35]]
Fang D, Zhang Z Y, Shangguan Z, He Y, Yu C, Li T J. Am. Chem. Soc., 2021, 143: 14502.
CrossRef Google scholar
[[36]]
He Y, Shangguan Z, Zhang Z Y, Xie M, Yu C, Li T Angew. Chem. Int. Ed., 2021, 60: 16539.
CrossRef Google scholar
[[37]]
Goual N, Casimiro L, Delattre V, Retailleau P, Maisonneuve S, Bogliotti N, Métivier R, Xie J, Marinetti A, Voituriez A Chem. Commun., 2021, 57: 10079.
CrossRef Google scholar
[[38]]
Ewert J, Heintze L, Jorda-Redondo M, von Glasenapp J S, Nonell S, Bucher G, Peifer C, Herges R J. Am. Chem. Soc., 2022, 144: 15059.
CrossRef Google scholar
[[39]]
Goual N, Maisonneuve S, Retailleau P, Xie J, Marinetti A, Voituriez A J. Org. Chem., 2024, 89: 5098.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/