Low Temperature Tetragonal Tungsten Bronze Oxides for Li-ion Storage

Chengxin Xu , Wenda Zhang , Chenjie Lou , Chengyu Li , Ligang Xu , Yongchao Shi , Jie Liu , Huajie Luo , Jipeng Fu , Xiaojun Kuang , Mingxue Tang

Chemical Research in Chinese Universities ›› : 1 -5.

PDF
Chemical Research in Chinese Universities ›› : 1 -5. DOI: 10.1007/s40242-024-4173-7
Article

Low Temperature Tetragonal Tungsten Bronze Oxides for Li-ion Storage

Author information +
History +
PDF

Abstract

Nb-based tungsten bronze oxides have emerged as attractive materials in various fields, owing to the structural openings and simple synthesis method. In this work, the tetragonal tungsten bronze (TTB) NaWNbO6 was prepared by solid state reaction at a relatively low temperature of 775 °C. The local structure was systematically studied by solid state nuclear magnetic resonance (SSNMR) with the aid of transition electronic microscopy (TEM). The analysis indicates that NaWNbO6 has pentagonal, square, and triangular tunnels. Notably, square tunnels were partly occupied (50%) by Na, which creates the ability for the Li-ion storage with a volumetric capacity of 210 A·h·L−1 at 0.2 C. The 2D 23Na-23Na EXSY results further suggest the ability of ions to fast exchange between the tetragonal and pentagonal tunnels, resulting in a high-rate performance 20 C.

Keywords

Tetragonal tungsten bronze / Solid-state 23Na NMR / 93Nb NMR spectrum / Fast ion exchange

Cite this article

Download citation ▾
Chengxin Xu, Wenda Zhang, Chenjie Lou, Chengyu Li, Ligang Xu, Yongchao Shi, Jie Liu, Huajie Luo, Jipeng Fu, Xiaojun Kuang, Mingxue Tang. Low Temperature Tetragonal Tungsten Bronze Oxides for Li-ion Storage. Chemical Research in Chinese Universities 1-5 DOI:10.1007/s40242-024-4173-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dunn J B, Gaines L, Kelly J C, James C, Gallagher K G. Energy Environ. Sci., 2015, 8: 158.

[2]

Nishi Y. J. Power Sources, 2001, 100: 101.

[3]

Yang Y, Zhao J. Adv. Sci., 2021, 8: 2004855.

[4]

Rao F, Xiao Q, Wei Y, Wang J, Yu R, Wang D. Chem. Res. Chinese Universities, 2024, 40: 690.

[5]

Bai Y, Feng R, Yan T, Liu Y, Cui L, Wang K. Chem. Res. Chinese Universities, 2023, 39: 1100.

[6]

Hu T, Yang W, Wang C, Bu Y, Jin F, Zheng D, Gu M, Liu W, Liang Q. Chem. Res. Chinese Universities, 2021, 37: 286.

[7]

Griffith K J, Wiaderek K M, Cibin G, Marbella L E, Grey C P. Nature, 2018, 559: 556.

[8]

Xiong X, Yang L, Liang G, Liu Z, Yang Z, Zhang R, Wang C, Che R. Adv. Energy Mater., 2022, 12: 2201967.

[9]

Luo Y, Le Calvez E, Zhou Y, Gautron É, Quarez É, Preefer M, Crosnier O, Weker J N, Pilon L, Brousse T, Dunn B. Chem. Mater., 2023, 35: 8675.

[10]

Adamczyk B J, Jüstel T, Plewa J, Sopicka-Lizer M, Michalik D. Ceram. Inter., 2017, 43: 12381.

[11]

Kuhn A, Azcondo M T, Amador U, Boulahya K, Sobrados I, Sanz J, García-Alvarado F. Inorg. Chem., 2007, 46: 5390.

[12]

Rietveld H M. J. Appl. Crystallogr., 1969, 2: 65.

[13]

Coelho A A. Topas academic V6, 2016, Brisbane, Australia: Coelho software

[14]

Messinger R J, Ménétrier M, Salager E, Boulineau A, Duttine M, Carlier D, Ateba Mba J-M, Croguennec L, Masquelier C, Massiot D, Deschamps M. Chem. Mater., 2015, 27: 5212.

[15]

Van Meerten S G J, Franssen W M J, Kentgens A P M. J. Magnetic Resonance, 2019, 301: 56.

[16]

Takusagawa F, Jacobson R A. J. Solid State Chem., 197, 18: 163.

[17]

Johnston K E, Griffin J M, Walton R I, Dawson D M, Lightfoot P, Ashbrook S E. Phys. Chem. Chem. Phys., 2011, 13: 7565.

[18]

Tran T. D., Feikert J. H., Pekala R. W., Kinoshita K., J. Appl. Electrochem., 1996, 26???

[19]

Hyde B G, O’Keeffe M. Acta CrystA, 1973, 29: 243.

[20]

Yang H, Xu H, Wang L, Zhang L, Huang Y, Hu X. Chem. A European J., 2017, 23: 4203.

[21]

Liu S, Zhou J, Cai Z, Fang G, Pan A, Liang S. Nanotechnology, 201, 27: 46LT01.

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/