Photoinduced Bending and Curling Motions in Molecular Microcrystals of Naphthyl Meldrum’s Acid Derivative Based on E-to-Z Photoisomerization

Xiaowen Zhang, Tianyi Xu, Chenchen Zhang, Fei Tong

Chemical Research in Chinese Universities ›› , Vol. 40 ›› Issue (5) : 907-913. DOI: 10.1007/s40242-024-4153-y
Article

Photoinduced Bending and Curling Motions in Molecular Microcrystals of Naphthyl Meldrum’s Acid Derivative Based on E-to-Z Photoisomerization

Author information +
History +

Abstract

Dynamic photoresponsive molecular crystals are promising candidates for making intelligent devices and materials in the future. Here, we synthesized a new photoactive molecule (E)-2,2-dimethyl-5-[3-(naphthalen-1-yl)allylide]-1,3-dioxane-4,6-dione [(E)-DNADD] that undergoes an E-to-Z photoisomerization in both liquid solution and solids when exposed to visible light (405 nm). Compared to the bulk crystals, the photoresponsive behavior in microcrystals was profoundly improved. Highly crystalline (E)-DNADD microplate crystals exhibit robust motions, including bending, curling, and coiling under light irradiation. The photoproduct conversion of the photochemical reaction in the microplate is no more than 20%, while the large bending curvature of the coiled illuminated samples was estimated at approximately 150–300 mm−1, comparable to some photoactive nanowires. Our results indicate that shrinking crystal dimensions can boost the photoresponses in molecular crystals and provide a facile strategy for developing dynamic molecular crystals at the microscopic scale.

Cite this article

Download citation ▾
Xiaowen Zhang, Tianyi Xu, Chenchen Zhang, Fei Tong. Photoinduced Bending and Curling Motions in Molecular Microcrystals of Naphthyl Meldrum’s Acid Derivative Based on E-to-Z Photoisomerization. Chemical Research in Chinese Universities, , 40(5): 907‒913 https://doi.org/10.1007/s40242-024-4153-y

References

[[1]]
Yang M, Yuan Z, Liu J, Fang Z, Fang L, Yu D, Li Q Adv. Opt. Mat., 2019, 7: 1900069.
CrossRef Google scholar
[[2]]
Yan J, Zheng Q, Wang S P, Tian Y Z, Gong W Q, Gao F, Qiu J J, Li L, Yang S H, Cao M S Adv. Mater., 2023, 35: 2300015.
CrossRef Google scholar
[[3]]
Zeng J Y, Wang X S, Xie B R, Li Q R, Zhang X Z J. Am. Chem. Soc., 2022, 144: 1218.
CrossRef Google scholar
[[4]]
Diao Z J, Liu S Y, Wen H, Liu G L, Yang T, Li J J, Liu X Q, Sun L B Angew. Chem. Int. Ed., 2023, 135: e202301739.
CrossRef Google scholar
[[5]]
Zhao X, Wang L Y, Tang C Y, Zha X J, Liu Y, Su B H, Ke K, Bao R Y, Yang M B, Yang W ACS Nano, 2020, 14: 8793.
CrossRef Google scholar
[[6]]
Gao Y Y, Yan C, Huang H C, Yang T, Tian G, Xiong D, Chen N J, Chu X, Zhong S, Deng W L, Fang Y, Yang W Q Adv. Funct. Mater., 2020, 30: 1909603.
CrossRef Google scholar
[[7]]
Sagara Y, Yamane S, Mitani M, Weder C, Kato T Adv. Mater., 2016, 28: 1073.
CrossRef Google scholar
[[8]]
Yu X D, Chen L M, Zhang M M, Yi T Chem. Soc. Rev., 2014, 43: 5346.
CrossRef Google scholar
[[9]]
Li N, Yu S S, Zhao L, Zhang P F, Wang Z Q, Wei Z T, Chen W B, Xu X H Inorg. Chem., 2023, 62: 2024.
CrossRef Google scholar
[[10]]
Zhang Z J, Chen X J, Zhang H J, Liu W X, Zhu W, Zhu Y F Adv. Mater., 2020, 32: 1907746.
CrossRef Google scholar
[[11]]
Varghese S S, Varghese S H, Swaminathan S, Singh K K, Mittal V Electronics, 2015, 4: 651.
CrossRef Google scholar
[[12]]
Chen R, Chen X, Zhou Y, Lin T, Leng Y, Huang X, Xiong Y ACS Nano, 2022, 16: 3351.
CrossRef Google scholar
[[13]]
Shcherbakov M R, Neshev D N, Hopkins B, Shorokhov A S, Staude I, Melik-Gaykazyan E V, Decker M, Ezhov A A, Miroshnichenko A E, Brener I, Fedyanin A A, Kivshar Y S Nano Lett., 2014, 14: 6488.
CrossRef Google scholar
[[14]]
Gelebart A H, Mulder D J, Varga M, Konya A, Vantomme G, Meijer E W, Selinger R L B, Broer D J Nature, 2017, 546: 632.
CrossRef Google scholar
[[15]]
Zhang B, Li H G, Cheng J X, Ye H T, Sakhaei A H, Yuan C, Rao P, Zhang Y F, Chen Z, Wang R, He X N, Liu J, Xiao R, Qu S X, Ge Q Adv. Mater., 2021, 33: 2101298.
CrossRef Google scholar
[[16]]
Goulet-Hanssens A, Eisenreich F, Hecht S Adv. Mater., 2020, 32: 1905966.
CrossRef Google scholar
[[17]]
Wang B H, Thukral A, Xie Z Q, Liu L M, Zhang X N, Huang W, Yu X G, Yu C J, Marks T J, Facchetti A Nat. Commun., 2020, 11: 2405.
CrossRef Google scholar
[[18]]
Bhandary S, Belis M, Kaczmarek A M, Van Hecke K J. Am. Chem. Soc., 2022, 144: 22051.
CrossRef Google scholar
[[19]]
Liang L L, Yu R L, Ong S J H, Yang Y, Zhang B S, Ji G B, Xu Z C J ACS Nano, 2023, 17: 12409.
CrossRef Google scholar
[[20]]
White T J, Broer D J Nat. Mater., 2015, 14: 1087.
CrossRef Google scholar
[[21]]
Pang X L, Lv J A, Zhu C Y, Qi L, Yu Y L Adv. Mater., 2019, 31: 1904224.
CrossRef Google scholar
[[22]]
Gelebart A H, Mulder D J, Varga M, Konya A, Vantomme G, Meijer E W, Selinger R L B, Broer D J Nature, 2017, 546: 7660.
CrossRef Google scholar
[[23]]
Schultzke S, Scheuring N, Puylaert P, Lehmann M, Staubitz A Adv. Sci., 2023, 10: 2302692.
CrossRef Google scholar
[[24]]
Kim H K, Wang X S, Fujita Y, Sudo A, Nishida H, Fujii M, Endo T Polymer, 2005, 46: 5879.
CrossRef Google scholar
[[25]]
Luo P F, Xiang S L, Li C, Zhu M Q J. Polym. Sci., 2021, 59: 2246.
CrossRef Google scholar
[[26]]
Chen Y H, Yang J J, Zhang X, Y. Feng Y, Zeng H, Wang L, Feng W Mater. Horiz., 2021, 8: 728.
CrossRef Google scholar
[[27]]
Xu L, Zheng H, Xue F, Ji Q, Qiu C, Yan Q, Ding R, Zhao X, Hu Y, Peng Q, He X Chem. Eng. J., 2023, 463: 142392.
CrossRef Google scholar
[[28]]
Han S J, Tudi A, Zhang W B, Hou X L, Yang Z H, Pan S L Angew. Chem. Int. Ed., 2023, 62: e202302025.
CrossRef Google scholar
[[29]]
Awad W M, Davies D W, Kitagawa D, Halabi J M, Al-Handawi M B, Tahir I, Tong F, Campillo-Alvarado G, Shtukenberg A G, Alkhidir T, Hagiwara Y, Almehairbi M, Lan L F, Hasebe S, Karothu D P, Mohamed S, Koshima H, Kobatake S, Diao Y, Chandrasekar R, Zhang H Y, Sun C C, Bardeen C, Al-Kaysi R O, Kahr B, Naumov P Chem. Soc. Rev., 2023, 52: 3098.
CrossRef Google scholar
[[30]]
Abendroth J M, Bushuyev O S, Weiss P S, Barrett C J ACS Nano, 2015, 9: 7746.
CrossRef Google scholar
[[31]]
Morimoto K, Kitagawa D, Tong F, Chalek K, Mueller L J, Bardeen C J, Kobatake S Angew. Chem. Int. Ed., 2022, 61: e202114089.
CrossRef Google scholar
[[32]]
Tong F, Qu D H Langmuir, 2022, 38: 4793.
CrossRef Google scholar
[[33]]
Kim T, Zhu L, Mueller L J, Bardeen C J CrystEngComm, 2012, 14: 7792.
CrossRef Google scholar
[[34]]
Taniguchi T, Asahi T, Koshima H Crystals, 2019, 9: 437.
CrossRef Google scholar
[[35]]
Xu TY, Tong F, Xu H, Wang M-Q, Tian H, Qu D H J. Am. Chem. Soc., 2022, 144: 6278.
CrossRef Google scholar
[[36]]
Zhu L Y, Tong F, Zaghloul N, Baz O, Bardeen C J, Al-Kaysi R O J. Mater. Chem. C, 2016, 4: 8245.
CrossRef Google scholar
[[37]]
Tong F, Chen S L, Li Z W, Liu M Y, Al-Kaysi R O, Mohideen U, Yin Y D, Bardeen C J Angew. Chem. Int. Ed., 2019, 58: 15429.
CrossRef Google scholar
[[38]]
Xu T Y, Cui M, Zhao C, Zhou S W, Zhang T L, Lin H Y, Tong F, Qu D H CCS Chemistry, 2024, 6: 1071.
CrossRef Google scholar
[[39]]
Schmidt G M J Pure Appl. Chem., 1971, 27: 647.
CrossRef Google scholar
[[40]]
Tong F, Kitagawa D, Dong X N, Kobatake S, Bardeen C J Nanoscale, 2018, 10: 3393.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/