Photoinduced Bending and Curling Motions in Molecular Microcrystals of Naphthyl Meldrum’s Acid Derivative Based on E-to-Z Photoisomerization

Xiaowen Zhang , Tianyi Xu , Chenchen Zhang , Fei Tong

Chemical Research in Chinese Universities ›› : 1 -7.

PDF
Chemical Research in Chinese Universities ›› : 1 -7. DOI: 10.1007/s40242-024-4153-y
Article

Photoinduced Bending and Curling Motions in Molecular Microcrystals of Naphthyl Meldrum’s Acid Derivative Based on E-to-Z Photoisomerization

Author information +
History +
PDF

Abstract

Dynamic photoresponsive molecular crystals are promising candidates for making intelligent devices and materials in the future. Here, we synthesized a new photoactive molecule (E)-2,2-dimethyl-5-[3-(naphthalen-1-yl)allylide]-1,3-dioxane-4,6-dione [(E)-DNADD] that undergoes an E-to-Z photoisomerization in both liquid solution and solids when exposed to visible light (405 nm). Compared to the bulk crystals, the photoresponsive behavior in microcrystals was profoundly improved. Highly crystalline (E)-DNADD microplate crystals exhibit robust motions, including bending, curling, and coiling under light irradiation. The photoproduct conversion of the photochemical reaction in the microplate is no more than 20%, while the large bending curvature of the coiled illuminated samples was estimated at approximately 150–300 mm−1, comparable to some photoactive nanowires. Our results indicate that shrinking crystal dimensions can boost the photoresponses in molecular crystals and provide a facile strategy for developing dynamic molecular crystals at the microscopic scale.

Keywords

Photochemistry / Molecular crystal / E-to-Z photoisomerization / Photoinduced motion

Cite this article

Download citation ▾
Xiaowen Zhang, Tianyi Xu, Chenchen Zhang, Fei Tong. Photoinduced Bending and Curling Motions in Molecular Microcrystals of Naphthyl Meldrum’s Acid Derivative Based on E-to-Z Photoisomerization. Chemical Research in Chinese Universities 1-7 DOI:10.1007/s40242-024-4153-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang M, Yuan Z, Liu J, Fang Z, Fang L, Yu D, Li Q. Adv. Opt. Mat., 2019, 7: 1900069.

[2]

Yan J, Zheng Q, Wang S P, Tian Y Z, Gong W Q, Gao F, Qiu J J, Li L, Yang S H, Cao M S. Adv. Mater., 2023, 35: 2300015.

[3]

Zeng J Y, Wang X S, Xie B R, Li Q R, Zhang X Z. J. Am. Chem. Soc., 2022, 144: 1218.

[4]

Diao Z J, Liu S Y, Wen H, Liu G L, Yang T, Li J J, Liu X Q, Sun L B. Angew. Chem. Int. Ed., 2023, 135: e202301739.

[5]

Zhao X, Wang L Y, Tang C Y, Zha X J, Liu Y, Su B H, Ke K, Bao R Y, Yang M B, Yang W. ACS Nano, 2020, 14: 8793.

[6]

Gao Y Y, Yan C, Huang H C, Yang T, Tian G, Xiong D, Chen N J, Chu X, Zhong S, Deng W L, Fang Y, Yang W Q. Adv. Funct. Mater., 2020, 30: 1909603.

[7]

Sagara Y, Yamane S, Mitani M, Weder C, Kato T. Adv. Mater., 201, 28: 1073.

[8]

Yu X D, Chen L M, Zhang M M, Yi T. Chem. Soc. Rev., 2014, 43: 5346.

[9]

Li N, Yu S S, Zhao L, Zhang P F, Wang Z Q, Wei Z T, Chen W B, Xu X H. Inorg. Chem., 2023, 62: 2024.

[10]

Zhang Z J, Chen X J, Zhang H J, Liu W X, Zhu W, Zhu Y F. Adv. Mater., 2020, 32: 1907746.

[11]

Varghese S S, Varghese S H, Swaminathan S, Singh K K, Mittal V. Electronics, 2015, 4: 651.

[12]

Chen R, Chen X, Zhou Y, Lin T, Leng Y, Huang X, Xiong Y. ACS Nano, 2022, 16: 3351.

[13]

Shcherbakov M R, Neshev D N, Hopkins B, Shorokhov A S, Staude I, Melik-Gaykazyan E V, Decker M, Ezhov A A, Miroshnichenko A E, Brener I, Fedyanin A A, Kivshar Y S. Nano Lett., 2014, 14: 6488.

[14]

Gelebart A H, Mulder D J, Varga M, Konya A, Vantomme G, Meijer E W, Selinger R L B, Broer D J. Nature, 2017, 546: 632.

[15]

Zhang B, Li H G, Cheng J X, Ye H T, Sakhaei A H, Yuan C, Rao P, Zhang Y F, Chen Z, Wang R, He X N, Liu J, Xiao R, Qu S X, Ge Q. Adv. Mater., 2021, 33: 2101298.

[16]

Goulet-Hanssens A, Eisenreich F, Hecht S. Adv. Mater., 2020, 32: 1905966.

[17]

Wang B H, Thukral A, Xie Z Q, Liu L M, Zhang X N, Huang W, Yu X G, Yu C J, Marks T J, Facchetti A. Nat. Commun., 2020, 11: 2405.

[18]

Bhandary S, Belis M, Kaczmarek A M, Van Hecke K. J. Am. Chem. Soc., 2022, 144: 22051.

[19]

Liang L L, Yu R L, Ong S J H, Yang Y, Zhang B S, Ji G B, Xu Z C J. ACS Nano, 2023, 17: 12409.

[20]

White T J, Broer D J. Nat. Mater., 2015, 14: 1087.

[21]

Pang X L, Lv J A, Zhu C Y, Qi L, Yu Y L. Adv. Mater., 2019, 31: 1904224.

[22]

Gelebart A H, Mulder D J, Varga M, Konya A, Vantomme G, Meijer E W, Selinger R L B, Broer D J. Nature, 2017, 546: 7660.

[23]

Schultzke S, Scheuring N, Puylaert P, Lehmann M, Staubitz A. Adv. Sci., 2023, 10: 2302692.

[24]

Kim H K, Wang X S, Fujita Y, Sudo A, Nishida H, Fujii M, Endo T. Polymer, 2005, 46: 5879.

[25]

Luo P F, Xiang S L, Li C, Zhu M Q. J. Polym. Sci., 2021, 59: 2246.

[26]

Chen Y H, Yang J J, Zhang X, Y. Feng Y, Zeng H, Wang L, Feng W. Mater. Horiz., 2021, 8: 728.

[27]

Xu L, Zheng H, Xue F, Ji Q, Qiu C, Yan Q, Ding R, Zhao X, Hu Y, Peng Q, He X. Chem. Eng. J., 2023, 463: 142392.

[28]

Han S J, Tudi A, Zhang W B, Hou X L, Yang Z H, Pan S L. Angew. Chem. Int. Ed., 2023, 62: e202302025.

[29]

Awad W M, Davies D W, Kitagawa D, Halabi J M, Al-Handawi M B, Tahir I, Tong F, Campillo-Alvarado G, Shtukenberg A G, Alkhidir T, Hagiwara Y, Almehairbi M, Lan L F, Hasebe S, Karothu D P, Mohamed S, Koshima H, Kobatake S, Diao Y, Chandrasekar R, Zhang H Y, Sun C C, Bardeen C, Al-Kaysi R O, Kahr B, Naumov P. Chem. Soc. Rev., 2023, 52: 3098.

[30]

Abendroth J M, Bushuyev O S, Weiss P S, Barrett C J. ACS Nano, 2015, 9: 7746.

[31]

Morimoto K, Kitagawa D, Tong F, Chalek K, Mueller L J, Bardeen C J, Kobatake S. Angew. Chem. Int. Ed., 2022, 61: e202114089.

[32]

Tong F, Qu D H. Langmuir, 2022, 38: 4793.

[33]

Kim T, Zhu L, Mueller L J, Bardeen C J. CrystEngComm, 2012, 14: 7792.

[34]

Taniguchi T, Asahi T, Koshima H. Crystals, 2019, 9: 437.

[35]

Xu TY, Tong F, Xu H, Wang M-Q, Tian H, Qu D H. J. Am. Chem. Soc., 2022, 144: 6278.

[36]

Zhu L Y, Tong F, Zaghloul N, Baz O, Bardeen C J, Al-Kaysi R O. J. Mater. Chem. C, 201, 4: 8245.

[37]

Tong F, Chen S L, Li Z W, Liu M Y, Al-Kaysi R O, Mohideen U, Yin Y D, Bardeen C J. Angew. Chem. Int. Ed., 2019, 58: 15429.

[38]

Xu T Y, Cui M, Zhao C, Zhou S W, Zhang T L, Lin H Y, Tong F, Qu D H. CCS Chemistry, 2024, 6: 1071.

[39]

Schmidt G M J. Pure Appl. Chem., 1971, 27: 647.

[40]

Tong F, Kitagawa D, Dong X N, Kobatake S, Bardeen C J. Nanoscale, 2018, 10: 3393.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/