Mo2C Nanoparticles Supported on N, P Co-doped Carbon by Molten Salts Strategy for Efficient Electrocatalyst Towards Hydrogen Evolution Reaction

Xinyue Bi, Wenting Zhang, Duihai Tang, Shigang Xin, Zhen Zhao

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 101-105.

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 101-105. DOI: 10.1007/s40242-024-4151-0
Article

Mo2C Nanoparticles Supported on N, P Co-doped Carbon by Molten Salts Strategy for Efficient Electrocatalyst Towards Hydrogen Evolution Reaction

Author information +
History +

Abstract

In view of recent environmental concerns, electrochemical water splitting for hydrogen (H2) as one of the important reactions has getting more and more attention in these years. Herein, we synthesized a series of Mo, N, and P co-doped carbons as efficient electrocatalysts to replace the expensive platinum-based catalysts. As the final products, the combination of Mo2C nanoparticles (NPs) and N, P co-doped carbons were fabricated using a simple molten salt process. More notably, KCl as the template could be recycled and reused via water washing. The ratios of the precursors could affect the structure of the final production, and therefore further determine the performance of electrocatalytic towards hydrogen evolution reaction (HER). Owing to extensive supplies of active sites and heterogeneous structures that provide transfer channels for electrons, the optimal sample of GUPMo-2.00KCl exhibited the best HER activity among the as-synthesized samples, including low overpotentials, small Tafel slope, and good stability. This work opens up a novel prospect for the designing of high-performance electrocatalysts.

Cite this article

Download citation ▾
Xinyue Bi, Wenting Zhang, Duihai Tang, Shigang Xin, Zhen Zhao. Mo2C Nanoparticles Supported on N, P Co-doped Carbon by Molten Salts Strategy for Efficient Electrocatalyst Towards Hydrogen Evolution Reaction. Chemical Research in Chinese Universities, 2024, 41(1): 101‒105 https://doi.org/10.1007/s40242-024-4151-0

References

[[1]]
Zhu Y, Guo C, Zheng Y, Qiao S Acc. Chem. Res., 2017, 50: 915.
CrossRef Google scholar
[[2]]
Wang J, Xu F, Jin H, Chen Y, Wang Y Adv. Mater., 2017, 29: 1605838.
CrossRef Google scholar
[[3]]
Zhu J, Hu L, Zhao P, Lee L, Wong K Chem. Rev., 2020, 120: 851.
CrossRef Google scholar
[[4]]
Chia X, Eng A, Ambrosi A, Tan S, Pumera M Chem. Rev., 2015, 115: 11941.
CrossRef Google scholar
[[5]]
You B, Sun Y ChemPlusChem, 2016, 81: 1054.
CrossRef Google scholar
[[6]]
Dong G, Fang M, Wang H, Yip S, Cheung H, Wang F, Wong C, Chu S, Ho J C J. Mater. Chem. A, 2015, 3: 13080.
CrossRef Google scholar
[[7]]
Morales-Guio C G, Stern L, Hu X Chem. Soc. Rev., 2014, 43: 6555.
CrossRef Google scholar
[[8]]
Xiao P, Chen W, Wang X Adv. Energy Mater., 2015, 5: 1500985.
CrossRef Google scholar
[[9]]
Zheng Y, Jiao Y, Jaroniec M, Qiao S Angew. Chem. Int. Ed., 2015, 54: 52.
CrossRef Google scholar
[[10]]
Zou X, Zhang Y Chem. Soc. Rev., 2015, 44: 5148.
CrossRef Google scholar
[[11]]
Du X, Huang J, Zhang J, Yan Y, Wu C, Hu Y, Yan C, Lei T, Chen W, Fan C, Xiong J Angew. Chem. Int. Ed., 2019, 58: 4484.
CrossRef Google scholar
[[12]]
Shi Y, Zhang B Chem. Soc. Rev., 2016, 45: 1529.
CrossRef Google scholar
[[13]]
Benck J D, Hellstern T R, Kibsgaard J, Chakthranont P, Jaramillo T F ACS Catal., 2014, 4: 3957.
CrossRef Google scholar
[[14]]
Han L, Dong S, Wang E Adv. Mater., 2016, 28: 9266.
CrossRef Google scholar
[[15]]
Reynard D, Nagar B, Girault H ACS Catal., 2021, 11: 5865.
CrossRef Google scholar
[[16]]
Wu C, Li J ACS Appl. Mater. Interfaces, 2017, 9: 41314.
CrossRef Google scholar
[[17]]
Xiong J, Li J, Shi J, Zhang X, Sun N, Liu Z, Huang Y, Xu G, Cai W, Lei X, Feng L, Yang Z, Huang L, Cheng H ACS Energy Lett., 2018, 3: 341.
CrossRef Google scholar
[[18]]
Huang C, Miao X, Pi C, Gao B, Zhang X, Qin P, Huo K, Peng X, Chu P K Nano Energy, 2019, 60: 520.
CrossRef Google scholar
[[19]]
Zhu Y, Chen G, Xu X, Yang G, Liu M, Shao Z ACS Catal., 2017, 7: 3540.
CrossRef Google scholar
[[20]]
Li S, Cheng C, Sagaltchik A, Pachfule P, Zhao C, Thomas A Adv. Func. Mater., 2019, 29: 1807419.
CrossRef Google scholar
[[21]]
Mathialagan S, Priya G Carbon, 2020, 158: 756.
CrossRef Google scholar
[[22]]
Sun X, Tang D, Zhang W, Li K, Qiao Z, Liu Y, Liang D, Zhu J, Zhao Z J. Mater. Sci., 2019, 54: 638.
CrossRef Google scholar
[[23]]
Yang L, Chen W, Yang R, Chen A, Zhang H, Sun Y, Jia Y, Li X, Tang Z, Gui X ACS Appl. Mater. Interfaces, 2020, 12: 10755.
CrossRef Google scholar
[[24]]
Tang C, Wang W, Sun A, Qi C, Zhang D, Wu Z, Wang D ACS Catal., 2015, 5: 18107
[[25]]
Xu J, Miao S, Tang D, Zhang W, Zhao Z, Qiao Z Chem. Res. Chinese Universities, 2022, 38: 237.
CrossRef Google scholar
[[26]]
Xu J, Miao S, Tang D, Zhang W, Xin S, Zhao Z New J. Chem., 2022, 46: 12461.
CrossRef Google scholar
[[27]]
Mu Z, Guo T, Fei H, Mao Y, Wu Z, Wang D Appl. Surf. Sci., 2021, 551: 149321.
CrossRef Google scholar
[[28]]
Yang S, Wang Y, Zhang H, Zhang Y, Liu L, Fang L, Yang X, Gu X, Wang Y J. Catal., 2019, 371: 20.
CrossRef Google scholar
[[29]]
Choi S, Kim Y J, Jeon J, Lee B H, Cho J H, Lee S ACS Appl. Mater. Interfaces, 2019, 11: 47190.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/