Structure Engineering of Layered Double Hydroxides (LDHs) for Heterogeneous Catalysis

Zhexi Gao, Haoran Ma, Qian Wang, Dianqing Li, Junting Feng, Xue Duan

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 590-610. DOI: 10.1007/s40242-024-4147-9
Review

Structure Engineering of Layered Double Hydroxides (LDHs) for Heterogeneous Catalysis

Author information +
History +

Abstract

Layered double hydroxide (LDH) is regarded as an advanced platform material in catalysis and attracts vast attrition recently. As a kind of two-dimensional layered material, it exhibits great advantages including cation-tunability in layer, lattice limitation, topological transformation, ion exchange and intercalation characteristics. It also can be used as building blocks for composite catalytic materials. Over 100 years, a large number of works have been accomplished and researchers made great progress on investigating the LDH-based catalytic materials. In this review, we summarize representative achievements and significant progress in recent years, which mainly include constructing high entropy catalytic material, high dispersion/stability and interfacial supported catalytic material, composite catalytic materials and nano-reactor based on LDH. Furthermore, through collecting the excellent works, we conclude the future development potential of LDH and provide a perspective.

Keywords

Layered double hydroxide (LDH) material / Heterogeneous catalysis / Structure engineering

Cite this article

Download citation ▾
Zhexi Gao, Haoran Ma, Qian Wang, Dianqing Li, Junting Feng, Xue Duan. Structure Engineering of Layered Double Hydroxides (LDHs) for Heterogeneous Catalysis. Chemical Research in Chinese Universities, 2024, 40(4): 590‒610 https://doi.org/10.1007/s40242-024-4147-9

References

[1]
Zaera F. . Chem. Soc. Rev., 2013, 42: 2746,
CrossRef Google scholar
[2]
Sun Y, Gao S, Lei F, Xie Y. . Chem. Soc. Rev., 2015, 44: 623,
CrossRef Google scholar
[3]
Wang A, Li J, Zhang T. . Nat. Rev. Chem., 2018, 2: 65,
CrossRef Google scholar
[4]
Li J, Stephanopoulos M F, Xia Y. . Chem. Rev., 2020, 120: 11699,
CrossRef Google scholar
[5]
Friend C M, Xu B. . Acc. Chem. Res., 2017, 50: 517,
CrossRef Google scholar
[6]
Sudarsanam P, Zhong R, Van den Bosch S, Coman S M, Parvulescu V I, Sels B F. . Chem. Soc. Rev., 2018, 47: 8349,
CrossRef Google scholar
[7]
Hochstetter C. . Eur. J. Org. Chem., 1842, 27: 375
[8]
Feitknecht W. . Helv. Chim. Acta, 1942, 25: 555,
CrossRef Google scholar
[9]
Sideris P J, Nielsen U G, Gan Z, Grey C P. . Science, 2008, 321: 113,
CrossRef Google scholar
[10]
Fan G, Li F, Evans D G, Duan X. . Chem. Soc. Rev., 2014, 43: 7040,
CrossRef Google scholar
[11]
Zhou D, Li P, Lin X, McKinley A, Kuang Y, Liu W, Lin W-F, Sun X, Duan X. . Chem. Soc. Rev., 2021, 50: 8790,
CrossRef Google scholar
[12]
Liu W, Xu S, Guan S, Liang R, Wei M, Evans D G, Duan X. . Adv. Mater., 2018, 30: 1704376,
CrossRef Google scholar
[13]
Li Z, Liu K, Fan K, Yang Y, Shao M, Wei M, Duan X. . Angew. Chem. Int. Ed., 2019, 58: 3962,
CrossRef Google scholar
[14]
Li Z, Shao M, Zhou L, Zhang R, Zhang C, Wei M, Evans D G, Duan X. . Adv. Mater, 2016, 28: 2337,
CrossRef Google scholar
[15]
Yan H, Lu J, Wei M, Ma J, Li H, He J, Evans D G, Duan X. . J. Mol. Struc. Theochem, 2008, 866: 34,
CrossRef Google scholar
[16]
George E P, Raabe D, Ritchie R O. . Nat. Rev. Mater., 2019, 4: 515,
CrossRef Google scholar
[17]
Oses C, Toher C, Curtarolo S. . Nat. Rev. Mater., 2020, 5: 295,
CrossRef Google scholar
[18]
Xin Y, Li S, Qian Y, Zhu W, Yuan H, Jiang P, Guo R, Wang L. . ACS Catal., 2020, 10: 11280,
CrossRef Google scholar
[19]
Yao Y, Huang Z, Xie P, Lacey S D, Jacob R J, Xie H, Chen F, Nie A, Pu T, Rehwoldt M, Yu D, Zachariah M R, Wang C, Shahbazian-Yassar R, Li J, Hu L. . Science, 2018, 359: 1489,
CrossRef Google scholar
[20]
Gao S, Hao S, Huang Z, Yuan Y, Han S, Lei L, Zhang X, Shahbazian-Yassar R, Lu J. . Nat. Commun., 2020, 11: 2016,
CrossRef Google scholar
[21]
Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E. . Nat. Commun., 2019, 10: 2650,
CrossRef Google scholar
[22]
Li X, Zhou Y, Feng C, Wei R, Hao X, Tang K, Guan G. . Nano Res., 2023, 16: 4411,
CrossRef Google scholar
[23]
Liu X, Wang X, Yang B, Zhang J, Lu J. . Nano Res., 2023, 16: 4775,
CrossRef Google scholar
[24]
Yu X, Wang B, Wang C, Zhuang C, Yao Y, Li Z, Wu C, Feng J, Zou Z. . Small, 2021, 17: 2103412,
CrossRef Google scholar
[25]
Wang F, Zou P, Zhang Y, Pan W, Li Y, Liang L, Chen C, Liu H, Zheng S. . Nat. Commun., 2023, 14: 6019,
CrossRef Google scholar
[26]
Nguyen T X, Tsai C-C, Nguyen V T, Huang Y-J, Su Y-H, Li S-Y, Xie R-K, Lin Y-J, Lee J-F, Ting J-M. . Chem. Eng. J., 2023, 466: 143352,
CrossRef Google scholar
[27]
Sari F N I, Tran N T T, Lin Y-X, Li S-Y, Shen Y-H, Ting J-M. . Electrochimica Acta, 2023, 439: 141616,
CrossRef Google scholar
[28]
Li S, Wang D, Wu X, Chen Y. . Chinese J. Catal., 2020, 41: 550,
CrossRef Google scholar
[29]
He S, Li C, Chen H, Su D, Zhang B, Cao X, Wang B, Wei M, Evans D G, Duan X. . Chem. Mater., 2013, 25: 1040,
CrossRef Google scholar
[30]
Zhang S, Fan G, Li F. . Green Chem., 2013, 15: 2389,
CrossRef Google scholar
[31]
Dong C, Zhang X, Xu J, Si R, Sheng J, Luo J, Zhang S, Dong W, Li G, Wang W, Huang F. . Small, 2020, 16: 1905328,
CrossRef Google scholar
[32]
Wang Z, Xu S-M, Xu Y, Tan L, Wang X, Zhao Y, Duan H, Song Y-F. . Chem. Sci., 2019, 10: 378,
CrossRef Google scholar
[33]
Gao Z, Cai L, Miao C, Hui T, Wang Q, Li D, Feng J. . ChemCatChem, 2022, 14: e202200634,
CrossRef Google scholar
[34]
Gao Z, Zhao X, Li X, Wu H, Gao M, Wang Q, Li D, Feng J. . Chem. Eng. Sci., 2022, 258: 117777,
CrossRef Google scholar
[35]
Zhang J, Liu J, Xi L, Yu Y, Chen N, Sun S, Wang W, Lange K M, Zhang B. . J. Am. Chem. Soc., 2018, 140: 3876,
CrossRef Google scholar
[36]
Fang H, Liu D, Luo Y, Zhou Y, Liang S, Wang X, Lin B, Jiang L. . ACS Catal., 2022, 12: 3938,
CrossRef Google scholar
[37]
Guo Y, Wang M, Zhu Q, Xiao D, Ma D. . Nat. Catal., 2022, 5: 766,
CrossRef Google scholar
[38]
García-García F R, Guerrero-Ruiz A, Rodríguez-Ramos I. . Topics in Catalysis, 2009, 52: 758,
CrossRef Google scholar
[39]
Chen C, Wu K, Ren H, Zhou C, Luo Y, Lin L, Au C, Jiang L. . Energy & Fuels, 2021, 35: 11693,
CrossRef Google scholar
[40]
Wu H, Wang Q, Zhao Y, Gao Z, Lin Y, Zheng L, Li D, Feng J. . ACS Catal., 2024, 14: 1584,
CrossRef Google scholar
[41]
Dandekar A, Vannice M A. . J. Catal., 1999, 183: 344,
CrossRef Google scholar
[42]
Hu Q, Wang S, Gao Z, Li Y, Zhang Q, Xiang Q, Qin Y. . Appl. Catal. B: Environ., 2017, 218: 591,
CrossRef Google scholar
[43]
Chang S, Li M, Hua Q, Zhang L, Ma Y, Ye B, Huang W. . J. Catal., 2012, 293: 195,
CrossRef Google scholar
[44]
Du H, Fan J, Miao C, Gao M, Liu Y, Li D, Feng J. . Trans. Tianjin Uni., 2021, 27: 24,
CrossRef Google scholar
[45]
Liu N, Xu M, Yang Y, Zhang S, Zhang J, Wang W, Zheng L, Hong S, Wei M. . ACS Catal., 2019, 9: 2707,
CrossRef Google scholar
[46]
Wang Q, Feng J, Zheng L, Wang B, Bi R, He Y, Liu H, Li D. . ACS Catal., 2020, 10: 1353,
CrossRef Google scholar
[47]
Gao Z, Cai L, Ma H, Zhao Y, Wu H, Liu H, Wang Q, Li D, Feng J. . ACS Catal., 2023, 13: 12835,
CrossRef Google scholar
[48]
Wang Q, Chen L, Guan S, Zhang X, Wang B, Cao X, Yu Z, He Y, Evans D G, Feng J, Li D. . ACS Catal., 2018, 8: 3104,
CrossRef Google scholar
[49]
Ma W, Ma R, Wang C, Liang J, Liu X, Zhou K, Sasaki T. . ACS Nano, 2015, 9: 1977,
CrossRef Google scholar
[50]
Norsko J J R O P I P. . Rep, Prog, Phys., 1990, 53: 1253,
CrossRef Google scholar
[51]
Nørskov J J P I S S. . Prog, Surf, Sci., 1991, 38: 103,
CrossRef Google scholar
[52]
Gao Z., Zhao X., Wu H., Zhao Y., Ma H., Wang Q., Li D., Feng J., AlChE J., 2024, e18489.
[53]
Nørskov J K. . Prog. Surf. Sci., 1991, 38: 103,
CrossRef Google scholar
[54]
Yin P, Wu G, Wang X, Liu S, Zhou F, Dai L, Wang X, Yang B. . Nano Res, 2021, 14: 4783,
CrossRef Google scholar
[55]
Altaf N, Liang S, Iqbal R, Hayat M, Reina T R, Wang Q. . J. CO2 Util., 2020, 40: 101205,
CrossRef Google scholar
[56]
Chen Y, Yao H, Kong F, Tian H, Meng G, Wang S, Mao X, Cui X, Hou X, Shi J. . Appl. Catal. B: Environ., 2021, 297: 120474,
CrossRef Google scholar
[57]
Yu M, Zhou S, Wang Z, Zhao J, Qiu J. . Nano Energy, 2018, 44: 181,
CrossRef Google scholar
[58]
Tan W, Xie S, Le D, Diao W, Wang M, Low K-B, Austin D, Hong S, Gao F, Dong L, Ma L, Ehrlich S N, Rahman T S, Liu F. . Nat. Commun., 2022, 13: 7070,
CrossRef Google scholar
[59]
Zhang J, Zhao Y, Chen C, Huang Y-C, Dong C-L, Chen C-J, Liu R-S, Wang C, Yan K, Li Y, Wang G. . J. Am. Chem. Soc., 2019, 141: 20118,
CrossRef Google scholar
[60]
Pan Y, Chen Y, Wu K, Chen Z, Liu S, Cao X, Cheong W-C, Meng T, Luo J, Zheng L, Liu C, Wang D, Peng Q, Li J, Chen C. . Nat. Commun., 2019, 10: 4290,
CrossRef Google scholar
[61]
Yin P, Yao T, Wu Y, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Deng Z, Zhou G, Wei S, Li Y. . Angew. Chem. Int. Ed., 2016, 55: 10800,
CrossRef Google scholar
[62]
Xu Y, Chu M, Liu F, Wang X, Liu Y, Cao M, Gong J, Luo J, Lin H, Li Y, Zhang Q. . Nano Lett., 2020, 20: 6865,
CrossRef Google scholar
[63]
Huang D, He N, Zhu Q, Chu C, Weon S, Rigby K, Zhou X, Xu L, Niu J, Stavitski E, Kim J-H. . ACS Catal., 2021, 11: 5586,
CrossRef Google scholar
[64]
Wang Y, Wang S, Ma Z-L, Yan L-T, Zhao X-B, Xue Y-Y, Huo J-M, Yuan X, Li S-N, Zhai Q-G. . Adv. Mater., 2022, 34: 2107488,
CrossRef Google scholar
[65]
Zhao F, Fan L, Xu K, Hua D, Zhan G, Zhou S-F. . J. CO2 Util., 2019, 33: 222,
CrossRef Google scholar
[66]
Ding G, Li C, Ni Y, Chen L, Shuai L, Liao G. . EES Catal., 2023, 1: 369,
CrossRef Google scholar
[67]
Guo X, Zhang F, Evans D G, Duan X. . Chem. Commun., 2010, 46: 5197,
CrossRef Google scholar
[68]
Fu Q, Bao X. . Nat. Catal., 2019, 2: 834,
CrossRef Google scholar
[69]
Fu Q, Bao X. . Chem. Soc. Rev., 2017, 46: 1842,
CrossRef Google scholar
[70]
Wang Y, Zhang W, Deng D, Bao X. . Chinese J. Catal., 2017, 38: 1443,
CrossRef Google scholar
[71]
Buchmeiser M R. . ChemCatChem, 2021, 13: 785,
CrossRef Google scholar
[72]
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe C Y, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger A-C, Amal R, He H, Park S-E. . Chem. Soc. Rev., 2020, 49: 8584,
CrossRef Google scholar
[73]
Peridas G, Mordick Schmidt B. . Electr. J., 2021, 34: 106996,
CrossRef Google scholar
[74]
Baskaran D, Saravanan P, Nagarajan L, Byun H-S. . Chem. Eng. J., 2024, 491: 151998,
CrossRef Google scholar
[75]
Kalai D Y, Stangeland K, Tucho W M, Jin Y, Yu Z. . J. CO2 Util., 2019, 33: 189,
CrossRef Google scholar
[76]
Da Costa K Ś, Gálvez M E, Motak M, Grzybek T, Rønning M, Da Costa P. . Catal. Commun., 2018, 117: 26,
CrossRef Google scholar
[77]
Fan J, Yue X, Liu Y, Li D, Feng J. . Chem. Catal., 2022, 2: 531,
CrossRef Google scholar
[78]
Gao M, Fan J, Li X, Wang Q, Li D, Feng J, Duan X. . Angew. Chem. Int. Ed., 2023, 62: e202216527,
CrossRef Google scholar
[79]
Gao M, Fan J, Fan J, Wang Q, Li D, Feng J. . AlChE J., 2023, 69: e17976,
CrossRef Google scholar
[80]
Dong Y, Han H, Zhang J, Zhu Y, Song H, An Z, He J. . Mol. Catal., 2024, 556: 113914,
CrossRef Google scholar
[81]
An Z, Tang Y, Jiang Y, Han H, Ping Q, Wang W, Zhu Y, Song H, Shu X, Xiang X, He J. . J. Catal., 2021, 402: 22,
CrossRef Google scholar
[82]
Liu H, An Z, He J. . Mol. Catal., 2017, 443: 69,
CrossRef Google scholar
[83]
Zhou W, Zhou J, Chen Y, Cui A, Sun F A, He M, Xu Z, Chen Q. . Appl. Catal. A: Gen., 2017, 542: 191,
CrossRef Google scholar
[84]
Wu Y, Liu X, Lei Y, Qiu Y, Wang M, Wang H. . Appl. Clay Sci., 2017, 150: 34,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/