Integration of Melanin-Resveratrol Nanosystem for the Diagnostic-therapeutic of Renal Fibrosis

Tingting Li, Mengni Jia, Huifang Ji, Ruiping Zhang

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 86-94.

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 86-94. DOI: 10.1007/s40242-024-4146-x
Article

Integration of Melanin-Resveratrol Nanosystem for the Diagnostic-therapeutic of Renal Fibrosis

Author information +
History +

Abstract

In this work, melanin nanoparticle-resveratrol (MNP-RES) nanosystem was excogitated and constructed for the treatment and imaging of folate-induced renal fibrosis (RF) mice model to fulfill the combination of diagnosis and therapeutic. Physicochemical characterization indicated that MNP-RES was a monodisperse spherical framework with a uniform diameter of (18.6±2.7) nm and the drug loading content of RES was 44.8%. The inhibition ratios of reactive oxygen species, such as ·OH, ·O2, ABTS’ and DPPH were all greater than 80%. After systemic therapy with MNP-RES, the levels of serum creatinine (SCr) and blood urea nitrogen (BUN) were decreased, and the extent of renal fibrosis was considerably relieved, which was verified by H&E, Masson and terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) staining. The MNP-RES nanosystem can diagnose and monitor the therapeutic efficacy of RF in real time and noninvasively via photoacoustic/magnetic resonance imaging (PA/MRI) dual-modality imaging, and the MNP-RES diagnostic-therapeutic nanosystem had satisfactory biocompatibility in vivo, which facilitated its future bio-transformation for RF treatment in clinical application.

Keywords

Melanin / Resveratrol / Diagnostic-therapeutic nanosystem / Dual-modal imaging / Renal fibrosis

Cite this article

Download citation ▾
Tingting Li, Mengni Jia, Huifang Ji, Ruiping Zhang. Integration of Melanin-Resveratrol Nanosystem for the Diagnostic-therapeutic of Renal Fibrosis. Chemical Research in Chinese Universities, 2024, 41(1): 86‒94 https://doi.org/10.1007/s40242-024-4146-x

References

[1]
MiaoJ H, LiuJ F, NiuJ, ZhangY F, ShenW W, LuoC W, LiuY H, LiC J, LiH Y, YangP L, LiuY H, HouF F, ZhouL L Aging Cell, 2019, 18: e13004
CrossRef Google scholar
[2]
LiL, FuH Y, LiuY H Nat. Rev. Nephrol., 2022, 18: 545
CrossRef Google scholar
[3]
KadataneS P, SatarianoM, MasseyM, MonganK, RainaR Cells, 2023, 12: 1581
CrossRef Google scholar
[4]
Cuevas-DelgadoP, MiguelV, RupérezF J, LamasS, BarbasC Front. Mol. Biosci., 2023, 10: 1161036
CrossRef Google scholar
[5]
LiX, DongZ Q, ChangH, ZhouH B, WangJ, YangZ J, QiuM, BaiW F, ShiS L Mol. Omics., 2022, 18: 520
CrossRef Google scholar
[6]
ChenX H, LiuQ X, YangJ, KanM, JinR, PuT, YangY R, XingT, MengX M, ZangH M Phytother. Res., 2021, 35: 6401
CrossRef Google scholar
[7]
KlinkhammerB M, BoorP Mol. Aspects Med., 2023, 93: 101206
CrossRef Google scholar
[8]
WeiX J, HouY, LongM T, JiangL L, DuY J Life Sci., 2023, 312: 121033
CrossRef Google scholar
[9]
HuangX M, LiL Y, ChenZ X, YuH Y, YouX R, KongN, TaoW, ZhouX T, HuangJ H Adv. Mater., 2023, 35: e2302431
CrossRef Google scholar
[10]
WangY L, ZhangP, WeiY, ShenK L, XiaoL Y, MironR J, ZhangY F Adv. Healthc. Mater., 2021, 10: e2001014
CrossRef Google scholar
[11]
ChengH T, TaY N N, HsiaT F E, ChenY C Interdiscip. Rev. Nanomed. Nanobiotechnol., 2024, 16: e1953
CrossRef Google scholar
[12]
LaiX D, GengX R, TanL A, HuJ Q, WangS B Int. J. Nanomedicine, 2020, 15: 5613
CrossRef Google scholar
[13]
SaifiM A, PeddakkulappagariC S, AhmadA, GoduguC ACS Biomater. Sci. Eng., 2020, 6: 3563
CrossRef Google scholar
[14]
ZhangK Y, SunL, ZhangW N, CaoM Y, MaX N, YuB Y, XuH J, ZhengX C, TianJ W Anal. Chem., 2024, 96: 6356
CrossRef Google scholar
[15]
ShirokiiN, DinY, PetrovI, SereginY, SirotenkoS, RazlivinaJ, SerovN, VinogradovV Small, 2023, 19: e2207106
CrossRef Google scholar
[16]
FuM J, YangY P, ZhangZ M, HeY L, WangY Y, LiuC X, XuX H, LinJ, YanF Small, 2023, 19: e2205343
CrossRef Google scholar
[17]
MengT W, FanB, LiQ, PengX Y, XuJ, ZhangR P J. Mate. Chem. B, 2020, 8: 9888
CrossRef Google scholar
[18]
SongB H, WangW, TangX M, GohR M W, ThuyaW L, HoP C L, ChenL, WangL Cancers, 2023, 15: 2758
CrossRef Google scholar
[19]
FanS W, HuY H, YouY P, XueW J, ChaiR N, ZhangX S, ShouX T, ShiJ J Front. Pharmacol., 2022, 13: 924473
CrossRef Google scholar
[20]
LiT T, JingW Y, FuW H, YanZ R, MaY, LiX Q, JiH F, ZhangR P Biomater. Adv., 2023, 147: 213333
CrossRef Google scholar
[21]
ZhaoY F, FanX T, WangQ M, ZhenJ H, LiX, ZhouP, LangY T, ShengQ H, ZhangT W, HuangT T, ZhaoY C, LvZ M, WangR Redox. Biol., 2023, 62: 102674
CrossRef Google scholar
[22]
DengL Y, FanZ P, ChenB G, ZhaiH Y, HeH H, HeC, SunY N, WangY, MaH Int. J. Mol. Sci., 2023, 24: 4206
CrossRef Google scholar
[23]
TianQ W, CaiY, LiN, LiuQ F, GuB X, ChenZ G, SongS L Nanomedicine, 2020, 28: 102219
CrossRef Google scholar
[24]
LuP, LinD J, ChenN, WangL Y, ZhangX D, ChenH, MaP Anal. Methods, 2023, 15: 322
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/