Integration of Melanin-Resveratrol Nanosystem for the Diagnostic-therapeutic of Renal Fibrosis

Tingting Li, Mengni Jia, Huifang Ji, Ruiping Zhang

Chemical Research in Chinese Universities ›› DOI: 10.1007/s40242-024-4146-x
Article

Integration of Melanin-Resveratrol Nanosystem for the Diagnostic-therapeutic of Renal Fibrosis

Author information +
History +

Abstract

In this work, melanin nanoparticle-resveratrol (MNP-RES) nanosystem was excogitated and constructed for the treatment and imaging of folate-induced renal fibrosis (RF) mice model to fulfill the combination of diagnosis and therapeutic. Physicochemical characterization indicated that MNP-RES was a monodisperse spherical framework with a uniform diameter of (18.6±2.7) nm and the drug loading content of RES was 44.8%. The inhibition ratios of reactive oxygen species, such as ·OH, ·O2, ABTS’ and DPPH were all greater than 80%. After systemic therapy with MNP-RES, the levels of serum creatinine (SCr) and blood urea nitrogen (BUN) were decreased, and the extent of renal fibrosis was considerably relieved, which was verified by H&E, Masson and terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) staining. The MNP-RES nanosystem can diagnose and monitor the therapeutic efficacy of RF in real time and noninvasively via photoacoustic/magnetic resonance imaging (PA/MRI) dual-modality imaging, and the MNP-RES diagnostic-therapeutic nanosystem had satisfactory biocompatibility in vivo, which facilitated its future bio-transformation for RF treatment in clinical application.

Cite this article

Download citation ▾
Tingting Li, Mengni Jia, Huifang Ji, Ruiping Zhang. Integration of Melanin-Resveratrol Nanosystem for the Diagnostic-therapeutic of Renal Fibrosis. Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-024-4146-x

References

[[1]]
Miao J H, Liu J F, Niu J, Zhang Y F, Shen W W, Luo C W, Liu Y H, Li C J, Li H Y, Yang P L, Liu Y H, Hou F F, Zhou L L Aging Cell, 2019, 18: e13004.
CrossRef Google scholar
[[2]]
Li L, Fu H Y, Liu Y H Nat. Rev. Nephrol., 2022, 18: 545.
CrossRef Google scholar
[[3]]
Kadatane S P, Satariano M, Massey M, Mongan K, Raina R Cells, 2023, 12: 1581.
CrossRef Google scholar
[[4]]
Cuevas-Delgado P, Miguel V, Rupérez F J, Lamas S, Barbas C Front. Mol. Biosci., 2023, 10: 1161036.
CrossRef Google scholar
[[5]]
Li X, Dong Z Q, Chang H, Zhou H B, Wang J, Yang Z J, Qiu M, Bai W F, Shi S L Mol. Omics., 2022, 18: 520.
CrossRef Google scholar
[[6]]
Chen X H, Liu Q X, Yang J, Kan M, Jin R, Pu T, Yang Y R, Xing T, Meng X M, Zang H M Phytother. Res., 2021, 35: 6401.
CrossRef Google scholar
[[7]]
Klinkhammer B M, Boor P Mol. Aspects Med., 2023, 93: 101206.
CrossRef Google scholar
[[8]]
Wei X J, Hou Y, Long M T, Jiang L L, Du Y J Life Sci., 2023, 312: 121033.
CrossRef Google scholar
[[9]]
Huang X M, Li L Y, Chen Z X, Yu H Y, You X R, Kong N, Tao W, Zhou X T, Huang J H Adv. Mater., 2023, 35: e2302431.
CrossRef Google scholar
[[10]]
Wang Y L, Zhang P, Wei Y, Shen K L, Xiao L Y, Miron R J, Zhang Y F Adv. Healthc. Mater., 2021, 10: e2001014.
CrossRef Google scholar
[[11]]
Cheng H T, Ta Y N N, Hsia T F E, Chen Y C Interdiscip. Rev. Nanomed. Nanobiotechnol., 2024, 16: e1953.
CrossRef Google scholar
[[12]]
Lai X D, Geng X R, Tan L A, Hu J Q, Wang S B Int. J. Nanomedicine, 2020, 15: 5613.
CrossRef Google scholar
[[13]]
Saifi M A, Peddakkulappagari C S, Ahmad A, Godugu C ACS Biomater. Sci. Eng., 2020, 6: 3563.
CrossRef Google scholar
[[14]]
Zhang K Y, Sun L, Zhang W N, Cao M Y, Ma X N, Yu B Y, Xu H J, Zheng X C, Tian J W Anal. Chem., 2024, 96: 6356.
CrossRef Google scholar
[[15]]
Shirokii N, Din Y, Petrov I, Seregin Y, Sirotenko S, Razlivina J, Serov N, Vinogradov V Small, 2023, 19: e2207106.
CrossRef Google scholar
[[16]]
Fu M J, Yang Y P, Zhang Z M, He Y L, Wang Y Y, Liu C X, Xu X H, Lin J, Yan F Small, 2023, 19: e2205343.
CrossRef Google scholar
[[17]]
Meng T W, Fan B, Li Q, Peng X Y, Xu J, Zhang R P J. Mate. Chem. B, 2020, 8: 9888.
CrossRef Google scholar
[[18]]
Song B H, Wang W, Tang X M, Goh R M W, Thuya W L, Ho P C L, Chen L, Wang L Cancers, 2023, 15: 2758.
CrossRef Google scholar
[[19]]
Fan S W, Hu Y H, You Y P, Xue W J, Chai R N, Zhang X S, Shou X T, Shi J J Front. Pharmacol., 2022, 13: 924473.
CrossRef Google scholar
[[20]]
Li T T, Jing W Y, Fu W H, Yan Z R, Ma Y, Li X Q, Ji H F, Zhang R P Biomater. Adv., 2023, 147: 213333.
CrossRef Google scholar
[[21]]
Zhao Y F, Fan X T, Wang Q M, Zhen J H, Li X, Zhou P, Lang Y T, Sheng Q H, Zhang T W, Huang T T, Zhao Y C, Lv Z M, Wang R Redox. Biol., 2023, 62: 102674.
CrossRef Google scholar
[[22]]
Deng L Y, Fan Z P, Chen B G, Zhai H Y, He H H, He C, Sun Y N, Wang Y, Ma H Int. J. Mol. Sci., 2023, 24: 4206.
CrossRef Google scholar
[[23]]
Tian Q W, Cai Y, Li N, Liu Q F, Gu B X, Chen Z G, Song S L Nanomedicine, 2020, 28: 102219.
CrossRef Google scholar
[[24]]
Lu P, Lin D J, Chen N, Wang L Y, Zhang X D, Chen H, Ma P Anal. Methods, 2023, 15: 322.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/