A Dibenzo-18-crown-6-based Symmetric Dual-coumarin Lead Ion Fluorescent Probe and Its Imaging in Living Cells

Xiaolei Liu, Chongzhen Gong, Xiujing Peng, Guoxin Sun, Wei Yao, Yongjie Chu, Tianyong Zhang

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 79-85.

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 79-85. DOI: 10.1007/s40242-024-4145-y
Article

A Dibenzo-18-crown-6-based Symmetric Dual-coumarin Lead Ion Fluorescent Probe and Its Imaging in Living Cells

Author information +
History +

Abstract

Herein, a turn-on fluorescent probe for the detection of lead ions was developed using 7-diethylaminocoumarin as the fluorophore and dibenzo-18-crown-6 as the recognition unit. The response performance to lead ions was systematically studied. The probe showed specific selectivity and high sensitivity to lead ions, with fluorescence intensity at 496 nm increasing linearly with lead ion concentration (R 2=0.995) over the range of 1.0×10−7–1.0×10−6 mol/L, and an LOD of 11.4 nmol/L. Job’s plot revealed that the probe forms a 1:1 stoichiometry complex with lead ions during the recognition process. Furthermore, the sensing mechanism of the probe was confirmed by density functional theory calculations, indicating that the recognition mechanism is based on photoinduced electron transfer (PET). The introduction of lead ions blocks PET, resulting in fluorescence enhancement. Finally, it was applied in the detection of practical water samples and bioimaging, demonstrating high application value in the field of chemosensors.

Cite this article

Download citation ▾
Xiaolei Liu, Chongzhen Gong, Xiujing Peng, Guoxin Sun, Wei Yao, Yongjie Chu, Tianyong Zhang. A Dibenzo-18-crown-6-based Symmetric Dual-coumarin Lead Ion Fluorescent Probe and Its Imaging in Living Cells. Chemical Research in Chinese Universities, 2024, 41(1): 79‒85 https://doi.org/10.1007/s40242-024-4145-y

References

[[1]]
Rene W, Lenoble V, Chioukh M, Branger C Sens. Actuators, B: Chem., 2020, 319: 128252.
CrossRef Google scholar
[[2]]
Mahmoud M E, Osman M M, Hafez O F, Elmelegy E J. Hazard. Mater., 2010, 173: 349.
CrossRef Google scholar
[[3]]
Gong J, Wang X, Shao X, Yuan S, Yang C, Hu X Talanta, 2012, 101: 45.
CrossRef Google scholar
[[4]]
Schwarzenbach René P, Escher Beate I, Fenner K, Hofstetter Thomas B, Johnson C A, von Gunten U, Wehrli B Science, 2006, 313: 1072.
CrossRef Google scholar
[[5]]
Santucci R J, Scully J R PNAS, 2020, 117: 23211.
CrossRef Google scholar
[[6]]
Needleman H Annu. Rev. Med., 2004, 55: 209.
CrossRef Google scholar
[[7]]
Un H-I, Huang C-B, Huang J, Huang C, Jia T, Xu L Chem. Asian J., 2014, 9: 3397.
CrossRef Google scholar
[[8]]
He Q, Miller E W, Wong A P, Chang C J J. Am. Chem. Soc., 2006, 128: 9316.
CrossRef Google scholar
[[9]]
Kim H N, Ren W X, Kim J S, Yoon J Chem. Soc. Rev., 2012, 41: 3210.
CrossRef Google scholar
[[10]]
Al-Saidi H M Chem. Pap: Chem. Zvesti, 2023, 77: 4807.
CrossRef Google scholar
[[11]]
Mei H, Yang M, Liu X, Tian Y, Xu K Chin. J. Org. Chem., 2020, 40: 2508.
CrossRef Google scholar
[[12]]
Liu Z, Jin W, Wang F, Li T, Nie J, Xiao W, Zhang Q, Zhang Y Sens. Actuators, B: Chem., 2019, 296: 126698.
CrossRef Google scholar
[[13]]
Wan J, Zhang K, Li C, Li Y, Niu S Sens. Actuators, B: Chem., 2017, 246: 696.
CrossRef Google scholar
[[14]]
Asad M, Arshad M N, Asiri A M, Marwani H M, Alamry K A, Alam M M, Nazreen S, Elhenawy A A, Rahman M M J. Mol. Liq., 2023, 385: 122340.
CrossRef Google scholar
[[15]]
Li M, Jiang X-J, Wu H-H, Lu H-L, Li H-Y, Xu H, Zang S-Q, Mak T C W Dalton Trans., 2015, 44: 17326.
CrossRef Google scholar
[[16]]
Degirmenci A, Iskenderkaptanoglu D, Algi F Tetrahedron Lett., 2015, 56: 602.
CrossRef Google scholar
[[17]]
Bai C, Yao J, Meng Q, Dong Y, Chen M, Liu X, Wang X, Qiao R, Huang H, Wei B, Qu C, Miao H J. Hazard. Mater., 2024, 469: 133968.
CrossRef Google scholar
[[18]]
Silva A P d, Gunaratne H Q N, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacher J T, Rice T E Chem. Rev., 1997, 97: 1515.
CrossRef Google scholar
[[19]]
Zheng Y, Orbulescu J, Ji X, Andreopoulos F M, Pham S M, Leblanc R M J. Am. Chem. Soc., 2003, 125: 2680.
CrossRef Google scholar
[[20]]
Yang X, Zhang Y, Li Y, Liu X, Mao J, Yuan Y, Cui Y, Sun G, Zhang G RSC Adv., 2016, 6: 52004.
CrossRef Google scholar
[[21]]
Thakur A, Mandal D, Ghosh S Anal. Chem., 2013, 85: 1665.
CrossRef Google scholar
[[22]]
Mehta P K, Jeon J, Ryu K, Park S H, Lee K H J. Hazard. Mater., 2022, 427: 128161.
CrossRef Google scholar
[[23]]
Chen S-Y, Li Z, Li K, Yu X-Q Coord. Chem. Rev., 2021, 429: 213691.
CrossRef Google scholar
[[24]]
Das D K, Goswami P, Sarma S J. Fluoresc., 2013, 23: 503.
CrossRef Google scholar
[[25]]
Zhao J, Li C, Wei S, C, Zou L-W Spectrochimica Acta Part A, Mol. Biomol. Spectrosc., 2023, 300: 122904.
CrossRef Google scholar
[[26]]
Li J, Yim D, Jang W-D, Yoon J Chem. Soc. Rev., 2017, 46: 2437.
CrossRef Google scholar
[[27]]
Ast S, Fischer T, Muller H, Mickler W, Schwichtenberg M, Rurack K, Holdt H J Chemistry, 2013, 19: 2990.
CrossRef Google scholar
[[28]]
Coroaba A, Isac D-L, Al-Matarneh C, Vasiliu T, Ibanescu S-A, Zonda R, Ardeleanu R, Neamtu A, Timpu D, Nicolescu A, Mocci F, Maier S S, Laaksonen A, Abadie M J M, Pinteala M RSC Adv., 2020, 10: 38304.
CrossRef Google scholar
[[29]]
Schwarze T, Riemer J, Holdt H J Chem. Eur. J., 2018, 24: 10116.
CrossRef Google scholar
[[30]]
Song Y, Chen Z, Li H Curr. Org. Chem., 2012, 16: 2690.
CrossRef Google scholar
[[31]]
Leray I, Habib-Jiwan J L, Branger C, Soumillion J P, Valeur B J. Photochem. Photobiol., A: Chem, 2000, 135: 163.
CrossRef Google scholar
[[32]]
Erk Ç, Bulut M, Göçen A J. Incl. Phenom., 2000, 37: 441.
CrossRef Google scholar
[[33]]
Wu G, Li M, Zhu J, Lai K W C, Tong Q, Lu F RSC Adv., 2016, 6: 100696.
CrossRef Google scholar
[[34]]
Wu J-S, Liu W-M, Zhuang X-Q, Wang F, Wang P-F, Tao S-L, Zhang X-H, Wu S-K, Lee S-T Org. Lett., 2007, 9: 33.
CrossRef Google scholar
[[35]]
Chen C-T, Huang W-P J. Am. Chem. Soc., 2002, 124: 6246.
CrossRef Google scholar
[[36]]
Long L, Yuan F, Yang X, Ruan P, Chen X, Li L, He D, Yang S, Yang Y, Wang K Sens. Actuators, B: Chem, 2022, 369: 132211.
CrossRef Google scholar
[[37]]
Chen W, Yue X, Li W, Hao Y, Zhang L, Zhu L, Sheng J, Song X Sens. Actuators, B: Chem, 2017, 245: 702.
CrossRef Google scholar
[[38]]
Muthusamy S, Rajalakshmi K, Zhu D, Zhu W, Wang S, Lee K-B, Xu H, Zhao L Sens. Actuators, B: Chem, 2021, 346: 130534.
CrossRef Google scholar
[[39]]
Hettie K S, Glass T E Chem. Eur. J., 2014, 20: 17488.
CrossRef Google scholar
[[40]]
Erk Ç, Göçmen A, Bulut M J. Inclusion Phenom. Mol. Recognit. Chem., 1998, 31: 319.
CrossRef Google scholar
[[41]]
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A M Jr., Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J Gaussian 09 (revision D.01), 2009 Wallingford CT Gaussian, Inc.
[[42]]
Patel H A, Selberg J, Salah D, Chen H, Liao Y, Mohan Nalluri S K, Farha O K, Snurr R Q, Rolandi M, Stoddart J F ACS Appl. Mater. Interfaces, 2018, 10: 25303.
CrossRef Google scholar
[[43]]
Kolthoff I M, Miran K, Chantooni J J. Chem. Eng. Data, 1997, 42: 49.
CrossRef Google scholar
[[44]]
Izatt R M, Pawlak K, Bradshaw J S, Bruening R L Chem. Rev., 1991, 91: 1721.
CrossRef Google scholar
[[45]]
Ohshimo K, He X, Ito R, Misaizu F J. Phys. Chem. A, 2021, 125: 3718.
CrossRef Google scholar
[[46]]
Noh E, Park S, Kang S, Lee J Y, Jung J H Chem. Eur. J., 2013, 19: 2620.
CrossRef Google scholar
[[47]]
WHO Guidelines for Drinking-water Quality, Fourth Edition Incorporating the First and Second Addenda, 2022 415
[[48]]
Renny J S, Tomasevich L L, Tallmadge E H, Collum D B Angew. Chem. Int. Ed., 2013, 52: 11998.
CrossRef Google scholar
[[49]]
de Silva A P, Moody T S, Wright G D Analyst, 2009, 134: 2385.
CrossRef Google scholar
[[50]]
Huang S, Yang B, Tu S Comput. Theor. Chem., 2022, 1210: 113647.
CrossRef Google scholar
[[51]]
Nugent J W, Lee H, Lee H-S, Reibenspies J H, Hancock R D Inorg. Chem., 2014, 53: 9014.
CrossRef Google scholar
[[52]]
Liu Z, He W, Guo Z Chem. Soc. Rev., 2013, 42: 1568.
CrossRef Google scholar
[[53]]
Valeur B, Leray I Coord. Chem. Rev., 2000, 205: 3.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/