Construction of Photo- and Thermo-Responsive Polymer-MOF@Enzyme Composites for Enhancing Its Biocatalytic Performance
Muhammad Ali Tajwar , Nasir Ali , Xiangru Zhang , Rubina Jabeen , Yutong Liu , Dihua Shangguan , Li Qi
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1290 -1297.
Construction of Photo- and Thermo-Responsive Polymer-MOF@Enzyme Composites for Enhancing Its Biocatalytic Performance
Recently, metal-organic framework (MOF)@enzyme composites have attracted increasing research interest. However, the fabrication of polymers-modified MOF@enzyme composites with high bio-catalytic performance remains challenging. Herein, a stimulus-responsive polymer, poly(acrylate-3′,3′-dimethyl-6-nitro-spiro-2H-1-benzopyran-2,2′ indoline-1′-ester-co-N-isopropyl acrylamide) (PSPN), was in-situ polymerized in UiO-66-NH2 (UN). The dual-responsive PSPN-UN@L-ASNase composites were constructed following L-asparaginase (L-ASNase) covalently attached to the UN surface. Interestingly, under 365 nm UV irradiation at 45 °C, the PSP moiety in PSPN underwent a trans-to-cis conformational change and the PN moiety in PSPN transferred from a stretched- to a coiled-state, generating a confinement effect that significantly enhanced the bio-catalytic performance of the composites. Compared with free L-ASNase, the composites showed a 42.0-folds increase in maximum catalytic reaction velocity. Furthermore, the PSPN-UN@L-ASNase composites demonstrated high toxicity for Jurkat leukaemia cells. The stimulus-responsive polymer-MOF@enzyme composites provide a novel avenue for controlled bio-catalysis with great potential for targeted leukaemia therapy.
Photo-/thermo-responsive polymer / Metal-organic framework (MOF) / L-Asparaginase (L-ASNase) immobilization / Confinement effect / Catalytic efficiency / Leukaemia cell
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
/
| 〈 |
|
〉 |