Construction of Photo- and Thermo-Responsive Polymer-MOF@Enzyme Composites for Enhancing Its Biocatalytic Performance

Muhammad Ali Tajwar, Nasir Ali, Xiangru Zhang, Rubina Jabeen, Yutong Liu, Dihua Shangguan, Li Qi

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1290-1297.

Chemical Research in Chinese Universities All Journals
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1290-1297. DOI: 10.1007/s40242-024-4140-3
Article

Construction of Photo- and Thermo-Responsive Polymer-MOF@Enzyme Composites for Enhancing Its Biocatalytic Performance

Author information +
History +

Abstract

Recently, metal-organic framework (MOF)@enzyme composites have attracted increasing research interest. However, the fabrication of polymers-modified MOF@enzyme composites with high bio-catalytic performance remains challenging. Herein, a stimulus-responsive polymer, poly(acrylate-3′,3′-dimethyl-6-nitro-spiro-2H-1-benzopyran-2,2′ indoline-1′-ester-co-N-isopropyl acrylamide) (PSPN), was in-situ polymerized in UiO-66-NH2 (UN). The dual-responsive PSPN-UN@L-ASNase composites were constructed following L-asparaginase (L-ASNase) covalently attached to the UN surface. Interestingly, under 365 nm UV irradiation at 45 °C, the PSP moiety in PSPN underwent a trans-to-cis conformational change and the PN moiety in PSPN transferred from a stretched- to a coiled-state, generating a confinement effect that significantly enhanced the bio-catalytic performance of the composites. Compared with free L-ASNase, the composites showed a 42.0-folds increase in maximum catalytic reaction velocity. Furthermore, the PSPN-UN@L-ASNase composites demonstrated high toxicity for Jurkat leukaemia cells. The stimulus-responsive polymer-MOF@enzyme composites provide a novel avenue for controlled bio-catalysis with great potential for targeted leukaemia therapy.

Cite this article

Download citation ▾
Muhammad Ali Tajwar, Nasir Ali, Xiangru Zhang, Rubina Jabeen, Yutong Liu, Dihua Shangguan, Li Qi. Construction of Photo- and Thermo-Responsive Polymer-MOF@Enzyme Composites for Enhancing Its Biocatalytic Performance. Chemical Research in Chinese Universities, 2024, 40(6): 1290‒1297 https://doi.org/10.1007/s40242-024-4140-3
This is a preview of subscription content, contact us for subscripton.

References

[1]
WangN, JiW, WangL, WuW, ZhangW, WuQ, DuW, BaiH, PengB, MaB, LiL. RSC Med. Chem., 2022, 13: 117
[2]
ShrivastavaA, KhanA A, KhurshidM, KalamM A, JainS K, SinghalP K. Crit. Rev. Oncol. Hematol., 2016, 100: 1
[3]
BrumanoL P, da SilvaF V S, Costa-SilvaT A, ApolinarioA C, SantosJ, KleingesindsE K, MonteiroG, Rangel-YaguiC O, BenyahiaB, JuniorA P. Front. Bioeng. Biotechnol., 2019, 6: 212
[4]
UluA, AtesB. Bioconjugate Chem., 2017, 28: 1598
[5]
ShaoY, LiaoZ, GaoB, HeB. ACS Omega, 2022, 7: 11530
[6]
LiberelleB, DilE J, SabriF, FavisB D, de CrescenzoG, VirgilioN. ACS Appl. Polym. Mater., 2021, 3: 6359
[7]
Ali NomaS A, AcetO, UluA, OnalB, OdabasM, AtesB. Polym. Test., 2021, 93: 106980
[8]
AlmeidaM R, CristovaoR O, BarrosM A, NunesJ C F, BoaventuraR A R, LoureiroJ M, FariaJ L, NevesM C, FreireM G, Santos-EbinumaV C, TavaresA P M, SilvaC G. Sci. Rep., 2021, 11: 21529
[9]
WangY T, MengF C, SuR F, SunC R, HanQ Q, ZhangW N, ZhangS Y. Chem. Res. Chinese Universities, 2022, 38: 1356
[10]
GaoX, PanH, WeiY, YeM, QiaoC, WangJ, LiuQ, ZhouC. Biochem. Eng. J., 2023, 197: 108995
[11]
JiaoR, WangY, PangY, YangD, LouH, QiuX. ACS Appl. Nano Mater., 2023, 6: 17902
[12]
LiangJ, LiangK. Nano Today, 2021, 40: 101256
[13]
ZhangH, SunZ, WuC, QinX, LiuG. ACS Appl. Nano Mater., 2023, 6: 7477
[14]
LazaroI, WellsC, ForganR. Angew. Chem. Int. Ed., 2020, 59: 5211
[15]
HuangS, KouX, ShenJ, ChenG, OuyangG. Angew. Chem. Int. Ed., 2020, 59: 8786
[16]
GuC, SheY, ChenX C, ZhouB Y, ZhuY X, DingX Q, TanP, LiuX Q, SunL B. ACS Appl. Mater. Interfaces, 2022, 14: 30090
[17]
LiS F, ChenY, WangY S, MoH L, ZangS Q. Sci. China: Chem., 2022, 65: 1122
[18]
FengY, DuY, KuangG, ZhongL, HuH, JiaS, CuiJ. J. Colloid Interface Sci., 2022, 610: 709
[19]
ZhongL, FengY, HuH, XuJ, WangZ, DuY, CuiJ, JiaS. J. Colloid Interface Sci., 2021, 602: 426
[20]
KuangG, WangZ, LuoX, GengZ, CuiJ, BilalM, WangZ, JiaS. Int. J. Biol. Macromol., 2023, 242: 124807
[21]
ZhangY, HuP, MuhammadY, TangY, ShaoS, GaoZ, WangJ, WangR, HuY, KuangL, ZhaoZ, ZhaoZ. Chem. Eng. J., 2021, 405: 127003
[22]
CaoS L, YueD M, LiX H, SmithT J, LiN, ZongM H, WuH, MaY Z, LouW Y. ACS Sustain. Chem. Eng., 2016, 4: 3586
[23]
LeeJ, LeeJ, KimJ, KimM. Chem. Soc. Rev., 2023, 52: 6379
[24]
OuayB, TakayaH, UemuraT. J. Am. Chem. Soc., 2019, 141: 14549
[25]
WangD, LiT. Acc. Chem. Res., 2023, 56: 462
[26]
WangL, WangW, ZhengX, LiZ, XieZ. Chem. Eur. J., 2017, 23: 1379
[27]
CarrionC, ComaillsV, VisigaA, GauthierB, KhiarN. ACS Appl. Mater. Interfaces, 2023, 15: 27600
[28]
YangS, KarveV, JustinA, KochetygovI, EspinJ, AsgariM, TrukhinaO, SunD, PengL, QueenW. Coord. Chem. Rev., 2021, 427: 213525
[29]
WuX, YangC, GeJ, LiuZ. Nanoscale, 2015, 7: 18883
[30]
MaY, SunC, ZhangQ, RenY, ZengQ, CaoF, SunB, ZhangP, TangK. Mole. Catal., 2024, 553: 113750
[31]
LiY, LiuJ, ZhangK, LeiL, LeiZ. Eng. Chem. Res., 2018, 57: 559
[32]
HiraS, NallalM, RajendranK, SonS G, ParkS, LeeJ, JooS, ParkK. Anal. Chim. Acta, 2020, 1118: 26
[33]
HuJ, XuZ, LiaoD, JiangY, PuH, WuZ, XuX, ZhaoZ, LiuJ, LuX, LiuX, LiB. Adv. Healthc. Mater., 2023, 12: 2301316
[34]
WangY, YanJ, WenN, XiongH, CaiS, HeQ, HuY, PengD, LiuZ, LiuY. Biomaterials, 2020, 230: 119619
[35]
HosonoN, KitagawaS. Acc. Chem. Res., 2018, 51: 462
[36]
BazzazzadehA, DizajiB, KianinejadN, NouriA, IraniM. Int. J. Pharm., 2020, 587: 119674
[37]
LiangY, ZhangL, PengC, ZhangS, ChenS, QianX, LuoW, DanQ, RenY, LiY, ZhaoB. Acta Pharm. Sin. B, 2021, 11: 3231
[38]
DongJ, MaK, DingJ, PeiX, PeiZ. Bioorg. Med. Chem., 2022, 69: 116885
[39]
ShiraishiY, MiyamotoR, HiraiT. Org. Lett., 2009, 11: 1571
[40]
KarmakarA, MileoP G M, BokI, BoP S, ZhangJ, YuanH, MaurinG, ZhaoD. Angew. Chem. Int. Ed, 2020, 59: 11003
[41]
LiJ, ZhangX, GoochJ, SunW, WangH, WangK. Polym. Bull., 2015, 72: 881
[42]
ZhangQ, SchattlingP, TheatoP, HoogenboomR. Eur. Polymer J., 2015, 62: 435
[43]
ChavanS, ShearerG, SvelleS, OlsbyeU, BoninoF, EthirajJ, LillerudK, BordigaS. Inorg. Chem., 2014, 53: 9509
[44]
ZhuJ, WuL, BuZ, JieS, LiB. ACS Omega, 2019, 4: 3188
[45]
ShanahanJ, KisselD, SullivanE. ACS Omega, 2020, 5: 6395
[46]
MoghadaskhouF, KeihanR, SadatZ, TadjarodiA, MalekiA. Sci. Rep., 2023, 13: 16584
[47]
ZhangH Z, QiL, QiaoJ, MaoL Q. Anal. Chim. Acta, 2012, 691: 103
[48]
AndradeK C R, Homem-de-MelloM, MottaJ A, BorgesM G, de AbreuJ A C, de SouzaP M, PessoaA, PappasG J Jr, MagalhaesP D. Int. L. Mol. Sci., 2024, 25: 4788
[49]
JingF, ChenS, CaoZ, WangG. Polymer, 2016, 83: 85
[50]
QiaoJ, QiL, MuX, ChenY. Analyst, 2011, 136: 2077

51

Accesses

0

Citations

Detail

Sections
Recommended

/