Construction of Photo- and Thermo-Responsive Polymer-MOF@Enzyme Composites for Enhancing Its Biocatalytic Performance

Muhammad Ali Tajwar, Nasir Ali, Xiangru Zhang, Rubina Jabeen, Yutong Liu, Dihua Shangguan, Li Qi

Chemical Research in Chinese Universities ›› DOI: 10.1007/s40242-024-4140-3
Article

Construction of Photo- and Thermo-Responsive Polymer-MOF@Enzyme Composites for Enhancing Its Biocatalytic Performance

Author information +
History +

Abstract

Recently, metal-organic framework (MOF)@enzyme composites have attracted increasing research interest. However, the fabrication of polymers-modified MOF@enzyme composites with high bio-catalytic performance remains challenging. Herein, a stimulus-responsive polymer, poly(acrylate-3′,3′-dimethyl-6-nitro-spiro-2H-1-benzopyran-2,2′ indoline-1′-ester-co-N-isopropyl acrylamide) (PSPN), was in-situ polymerized in UiO-66-NH2 (UN). The dual-responsive PSPN-UN@L-ASNase composites were constructed following L-asparaginase (L-ASNase) covalently attached to the UN surface. Interestingly, under 365 nm UV irradiation at 45 °C, the PSP moiety in PSPN underwent a trans-to-cis conformational change and the PN moiety in PSPN transferred from a stretched- to a coiled-state, generating a confinement effect that significantly enhanced the bio-catalytic performance of the composites. Compared with free L-ASNase, the composites showed a 42.0-folds increase in maximum catalytic reaction velocity. Furthermore, the PSPN-UN@L-ASNase composites demonstrated high toxicity for Jurkat leukaemia cells. The stimulus-responsive polymer-MOF@enzyme composites provide a novel avenue for controlled bio-catalysis with great potential for targeted leukaemia therapy.

Cite this article

Download citation ▾
Muhammad Ali Tajwar, Nasir Ali, Xiangru Zhang, Rubina Jabeen, Yutong Liu, Dihua Shangguan, Li Qi. Construction of Photo- and Thermo-Responsive Polymer-MOF@Enzyme Composites for Enhancing Its Biocatalytic Performance. Chemical Research in Chinese Universities, https://doi.org/10.1007/s40242-024-4140-3

References

[[1]]
Wang N, Ji W, Wang L, Wu W, Zhang W, Wu Q, Du W, Bai H, Peng B, Ma B, Li L RSC Med. Chem., 2022, 13: 117.
CrossRef Google scholar
[[2]]
Shrivastava A, Khan A A, Khurshid M, Kalam M A, Jain S K, Singhal P K Crit. Rev. Oncol. Hematol., 2016, 100: 1.
CrossRef Google scholar
[[3]]
Brumano L P, da Silva F V S, Costa-Silva T A, Apolinario A C, Santos J, Kleingesinds E K, Monteiro G, Rangel-Yagui C O, Benyahia B, Junior A P Front. Bioeng. Biotechnol., 2019, 6: 212.
CrossRef Google scholar
[[4]]
Ulu A, Ates B Bioconjugate Chem., 2017, 28: 1598.
CrossRef Google scholar
[[5]]
Shao Y, Liao Z, Gao B, He B ACS Omega, 2022, 7: 11530.
CrossRef Google scholar
[[6]]
Liberelle B, Dil E J, Sabri F, Favis B D, de Crescenzo G, Virgilio N ACS Appl. Polym. Mater., 2021, 3: 6359.
CrossRef Google scholar
[[7]]
Ali Noma S A, Acet O, Ulu A, Onal B, Odabas M, Ates B Polym. Test., 2021, 93: 106980.
CrossRef Google scholar
[[8]]
Almeida M R, Cristovao R O, Barros M A, Nunes J C F, Boaventura R A R, Loureiro J M, Faria J L, Neves M C, Freire M G, Santos-Ebinuma V C, Tavares A P M, Silva C G Sci. Rep., 2021, 11: 21529.
CrossRef Google scholar
[[9]]
Wang Y T, Meng F C, Su R F, Sun C R, Han Q Q, Zhang W N, Zhang S Y Chem. Res. Chinese Universities, 2022, 38: 1356.
CrossRef Google scholar
[[10]]
Gao X, Pan H, Wei Y, Ye M, Qiao C, Wang J, Liu Q, Zhou C Biochem. Eng. J., 2023, 197: 108995.
CrossRef Google scholar
[[11]]
Jiao R, Wang Y, Pang Y, Yang D, Lou H, Qiu X ACS Appl. Nano Mater., 2023, 6: 17902.
CrossRef Google scholar
[[12]]
Liang J, Liang K Nano Today, 2021, 40: 101256.
CrossRef Google scholar
[[13]]
Zhang H, Sun Z, Wu C, Qin X, Liu G ACS Appl. Nano Mater., 2023, 6: 7477.
CrossRef Google scholar
[[14]]
Lazaro I, Wells C, Forgan R Angew. Chem. Int. Ed., 2020, 59: 5211.
CrossRef Google scholar
[[15]]
Huang S, Kou X, Shen J, Chen G, Ouyang G Angew. Chem. Int. Ed., 2020, 59: 8786.
CrossRef Google scholar
[[16]]
Gu C, She Y, Chen X C, Zhou B Y, Zhu Y X, Ding X Q, Tan P, Liu X Q, Sun L B ACS Appl. Mater. Interfaces, 2022, 14: 30090.
CrossRef Google scholar
[[17]]
Li S F, Chen Y, Wang Y S, Mo H L, Zang S Q Sci. China: Chem., 2022, 65: 1122.
CrossRef Google scholar
[[18]]
Feng Y, Du Y, Kuang G, Zhong L, Hu H, Jia S, Cui J J. Colloid Interface Sci., 2022, 610: 709.
CrossRef Google scholar
[[19]]
Zhong L, Feng Y, Hu H, Xu J, Wang Z, Du Y, Cui J, Jia S J. Colloid Interface Sci., 2021, 602: 426.
CrossRef Google scholar
[[20]]
Kuang G, Wang Z, Luo X, Geng Z, Cui J, Bilal M, Wang Z, Jia S Int. J. Biol. Macromol., 2023, 242: 124807.
CrossRef Google scholar
[[21]]
Zhang Y, Hu P, Muhammad Y, Tang Y, Shao S, Gao Z, Wang J, Wang R, Hu Y, Kuang L, Zhao Z, Zhao Z Chem. Eng. J., 2021, 405: 127003.
CrossRef Google scholar
[[22]]
Cao S L, Yue D M, Li X H, Smith T J, Li N, Zong M H, Wu H, Ma Y Z, Lou W Y ACS Sustain. Chem. Eng., 2016, 4: 3586.
CrossRef Google scholar
[[23]]
Lee J, Lee J, Kim J, Kim M Chem. Soc. Rev., 2023, 52: 6379.
CrossRef Google scholar
[[24]]
Ouay B, Takaya H, Uemura T J. Am. Chem. Soc., 2019, 141: 14549.
CrossRef Google scholar
[[25]]
Wang D, Li T Acc. Chem. Res., 2023, 56: 462.
CrossRef Google scholar
[[26]]
Wang L, Wang W, Zheng X, Li Z, Xie Z Chem. Eur. J., 2017, 23: 1379.
CrossRef Google scholar
[[27]]
Carrion C, Comaills V, Visiga A, Gauthier B, Khiar N ACS Appl. Mater. Interfaces, 2023, 15: 27600.
CrossRef Google scholar
[[28]]
Yang S, Karve V, Justin A, Kochetygov I, Espin J, Asgari M, Trukhina O, Sun D, Peng L, Queen W Coord. Chem. Rev., 2021, 427: 213525.
CrossRef Google scholar
[[29]]
Wu X, Yang C, Ge J, Liu Z Nanoscale, 2015, 7: 18883.
CrossRef Google scholar
[[30]]
Ma Y, Sun C, Zhang Q, Ren Y, Zeng Q, Cao F, Sun B, Zhang P, Tang K Mole. Catal., 2024, 553: 113750.
CrossRef Google scholar
[[31]]
Li Y, Liu J, Zhang K, Lei L, Lei Z Eng. Chem. Res., 2018, 57: 559.
CrossRef Google scholar
[[32]]
Hira S, Nallal M, Rajendran K, Son S G, Park S, Lee J, Joo S, Park K Anal. Chim. Acta, 2020, 1118: 26.
CrossRef Google scholar
[[33]]
Hu J, Xu Z, Liao D, Jiang Y, Pu H, Wu Z, Xu X, Zhao Z, Liu J, Lu X, Liu X, Li B Adv. Healthc. Mater., 2023, 12: 2301316.
CrossRef Google scholar
[[34]]
Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Hu Y, Peng D, Liu Z, Liu Y Biomaterials, 2020, 230: 119619.
CrossRef Google scholar
[[35]]
Hosono N, Kitagawa S Acc. Chem. Res., 2018, 51: 462.
CrossRef Google scholar
[[36]]
Bazzazzadeh A, Dizaji B, Kianinejad N, Nouri A, Irani M Int. J. Pharm., 2020, 587: 119674.
CrossRef Google scholar
[[37]]
Liang Y, Zhang L, Peng C, Zhang S, Chen S, Qian X, Luo W, Dan Q, Ren Y, Li Y, Zhao B Acta Pharm. Sin. B, 2021, 11: 3231.
CrossRef Google scholar
[[38]]
Dong J, Ma K, Ding J, Pei X, Pei Z Bioorg. Med. Chem., 2022, 69: 116885.
CrossRef Google scholar
[[39]]
Shiraishi Y, Miyamoto R, Hirai T Org. Lett., 2009, 11: 1571.
CrossRef Google scholar
[[40]]
Karmakar A, Mileo P G M, Bok I, Bo P S, Zhang J, Yuan H, Maurin G, Zhao D Angew. Chem. Int. Ed, 2020, 59: 11003.
CrossRef Google scholar
[[41]]
Li J, Zhang X, Gooch J, Sun W, Wang H, Wang K Polym. Bull., 2015, 72: 881.
CrossRef Google scholar
[[42]]
Zhang Q, Schattling P, Theato P, Hoogenboom R Eur. Polymer J., 2015, 62: 435.
CrossRef Google scholar
[[43]]
Chavan S, Shearer G, Svelle S, Olsbye U, Bonino F, Ethiraj J, Lillerud K, Bordiga S Inorg. Chem., 2014, 53: 9509.
CrossRef Google scholar
[[44]]
Zhu J, Wu L, Bu Z, Jie S, Li B ACS Omega, 2019, 4: 3188.
CrossRef Google scholar
[[45]]
Shanahan J, Kissel D, Sullivan E ACS Omega, 2020, 5: 6395.
CrossRef Google scholar
[[46]]
Moghadaskhou F, Keihan R, Sadat Z, Tadjarodi A, Maleki A Sci. Rep., 2023, 13: 16584.
CrossRef Google scholar
[[47]]
Zhang H Z, Qi L, Qiao J, Mao L Q Anal. Chim. Acta, 2012, 691: 103.
CrossRef Google scholar
[[48]]
Andrade K C R, Homem-de-Mello M, Motta J A, Borges M G, de Abreu J A C, de Souza P M, Pessoa A, Pappas G J Jr, Magalhaes P D Int. L. Mol. Sci., 2024, 25: 4788.
CrossRef Google scholar
[[49]]
Jing F, Chen S, Cao Z, Wang G Polymer, 2016, 83: 85.
CrossRef Google scholar
[[50]]
Qiao J, Qi L, Mu X, Chen Y Analyst, 2011, 136: 2077.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/