Copper(I) Cluster of Aggregation-Induced Emission and X-Ray Scintillator Characteristic

Jiayu Xiong, Minjian Wu, Liao-Yuan Yao

Chemical Research in Chinese Universities ›› 2024

Chemical Research in Chinese Universities ›› 2024 DOI: 10.1007/s40242-024-4137-y
Article

Copper(I) Cluster of Aggregation-Induced Emission and X-Ray Scintillator Characteristic

Author information +
History +

Abstract

Due to their precise atomic structures, photoluminescent copper nanoclusters (Cu NCs) have promising applications in basic research and technical applications, such as bioimaging, cell labeling, phototherapy, and photoactivation catalysis. In this work, we report a simple strategy for synthesizing novel CuNCs co-protected by alkynyl and phosphine ligands with the molecular formula [Cu7(PPh3)10(PE)3(CH3O)] (Cu4@Cu3). Single-crystal X-ray crystallography reveals that the NC core exhibits an open square structure and an overall pyramid shape. Two Cu4@Cu3 units are connected through weak interactions to form dimers in crystals, creating a molecular cage that looks like two tightly closed bowls. Cu4@Cu3 exhibits dual emission in the visible region. It is also an aggregation-induced emission (AIE)-active luminescent substance, which exhibits strong emission in the visible light region when aggregated. Besides, it has the properties of radioluminescent (RL) and could be a potential scintillator material. This study not only enriches the types of atomically accurate AIE clusters, but also holds significant importance for the development of a new generation of high-performance and environmentally friendly X-ray scintillators.

Keywords

Copper nanocluster / Aggregation-induced emission / X-Ray scintillator

Cite this article

Download citation ▾
Jiayu Xiong, Minjian Wu, Liao-Yuan Yao. Copper(I) Cluster of Aggregation-Induced Emission and X-Ray Scintillator Characteristic. Chemical Research in Chinese Universities, 2024 https://doi.org/10.1007/s40242-024-4137-y

References

[1]
Dong J, Gan Z, Gu W, You Q, Zhao Y, Zha J, Li J, Deng H, Yan N, Wu Z. Angew. Chem. Int. Ed., 2021, 60: 17932.
CrossRef Google scholar
[2]
Zhou M, Higaki T, Hu G, Sfeir M Y, Chen Y, Jiang D E, Jin R. Science, 2019, 364: 279.
CrossRef Google scholar
[3]
Shi W Q, Zeng L, He R L, Han X S, Guan Z J, Zhou M, Wang Q M. Science, 2024, 383: 326.
CrossRef Google scholar
[4]
Jia T, Guan Z J, Zhang C, Zhu X Z, Chen Y X, Zhang Q, Yang Y, Sun D. J. Am. Chem. Soc., 2023, 145: 10355.
CrossRef Google scholar
[5]
Olaru M, Rychagova E, Ketkov S, Shynkarenko Y, Yakunin S, Kovalenko M V, Yablonskiy A, Andreev B, Kleemiss F, Beckmann J. J. Am. Chem. Soc., 2019, 142: 373.
CrossRef Google scholar
[6]
Ravaro L P, Zanoni K P, de Camargo A S. Energy Reports, 2020, 6: 37.
CrossRef Google scholar
[7]
Peng S, Yang H, Luo D, Xie M, Tang W, Ning G, Li D. Inorg. Chem. Front., 2022, 9: 5327.
CrossRef Google scholar
[8]
Peng S, Yang H, Luo D, Ning G, Li D. Small, 2024, 20: 2306863.
CrossRef Google scholar
[9]
Cho Y, Kim K H, Dhak P, Wang Z, Jeong H, Seo H, Lee K, Han J W, Oh S H, Park J H. ACS Energy Lett., 2024, 9: 2739.
CrossRef Google scholar
[10]
Antil N, Chauhan M, Akhtar N, Kalita R, Manna K. J. Am. Chem. Soc., 2023, 145: 6156.
CrossRef Google scholar
[11]
Park J, Jeong C, Na M, Oh Y, Lee K, Yang Y, Byon H R. Acs Catal., 2024, 14: 3198.
CrossRef Google scholar
[12]
Ghosh A, Sagadevan A, Murugesan K, Nastase S A F, Maity B, Bodiuzzaman M, Shkurenko A, Hedhili M N, Yin J, Mohammed O F. Mater Horiz., 2024, 11: 2494.
CrossRef Google scholar
[13]
Wang Y, Lin X, Mo K, Xie M, Huang Y, Ning G, Li D. Angew. Chem. Int. Ed., 2023, 62: e202218369.
CrossRef Google scholar
[14]
Qin H N, He M W, Wang J, Li H Y, Wang Z Y, Zang S Q, Mak T. J. Am. Chem. Soc., 2024, 146: 3545.
CrossRef Google scholar
[15]
Gupta A K, Kishore P V, Cyue J, Liao J, Duminy W, van Zyl W E, Liu C W. Inorg. Chem., 2021, 60: 8973.
CrossRef Google scholar
[16]
Wang L, Yan X, Tian G, Xie Z, Shi S, Zhang Y, Li S, Sun X, Sun J, He J, Shen H. Dalton Trans, 2023, 52: 3371.
CrossRef Google scholar
[17]
Bratsch S G. J. Phys. Chem. Ref. Data, 1989, 18: 1.
CrossRef Google scholar
[18]
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce M R, Cao M, Chen C, Zheng Z, Zhu M Q, Zhu W H, Zou H, Tang B Z. ACS Nano., 2023, 17: 14347.
CrossRef Google scholar
[19]
Guan W, Chen J, Liu J, Shi B, Yao H, Zhang Y, Wei T, Lin Q. Coordin. Chem. Rev., 2024, 507: 215717.
CrossRef Google scholar
[20]
Bandyopadhyay S, Kalangi S K, Singh V, Bhosale R S. Prog. Mol. Biol. Transl. Sci., 2021, 184: 1.
CrossRef Google scholar
[21]
Shi L, Liu Y, Wang Q, Wang T, Ding Y, Cao Y, Li Z, Wei H. Analyst, 2018, 143: 741.
CrossRef Google scholar
[22]
Yang X, Zheng X. Luminescence, 2024, 39: e4642.
CrossRef Google scholar
[23]
Xiang J, Zhang W, Li H, He Y. Chinese J. Polym. Sci., 2024, 42: 7.
CrossRef Google scholar
[24]
Zhang H, Zhao Z, McGonigal P R, Ye R, Liu S, Lam J W Y, Kwok R T K, Yuan W Z, Xie J, Rogach A L, Tang B Z. Mater. Today, 2020, 32: 275.
CrossRef Google scholar
[25]
Hu R, Yang X, Qin A, Tang B Z. Materials Chemistry Frontiers, 2021, 5: 4073.
CrossRef Google scholar
[26]
Luo Z, Yuan X, Yu Y, Zhang Q, Leong D T, Lee J Y, Xie J. J. Am. Chem. Soc., 2012, 134: 16662.
CrossRef Google scholar
[27]
Zhang M M, Dong X Y, Wang Z Y, Li H Y, Li S J, Zhao X, Zang S Q. Angew. Chem. Int. Ed., 2020, 132: 10138.
CrossRef Google scholar
[28]
Jin Y, Peng Q C, Xie J W, Li K, Zang S Q. Angew. Chem. Int. Ed., 2023, 62: e202301000.
CrossRef Google scholar
[29]
Jin Y, Dong X Y, Zhang C, Li S, Zang S Q, Mak T. J. Am. Chem. Soc., 2023, 145: 13514.
CrossRef Google scholar
[30]
Zhu Z Z, Tian C B, Sun Q F. Chem. Rec., 2021, 21: 498.
CrossRef Google scholar
[31]
Chan C L, Cheung K L, Lam W H, Cheng E C C, Zhu N, Choi S W K, Yam V W W. Chemistry: An Asian Journal, 200, 1: 273.
[32]
Sebek J, Knaanie R, Albee B, Potma E O, Gerber R B. The Journal of Physical Chemistry A, 2013, 117: 7442.
CrossRef Google scholar
[33]
Dai X, Huo M, Liu Y. Nat. Rev. Chem., 2023, 7: 854.
CrossRef Google scholar
[34]
Chen Q, Wu J, Ou X, Huang B, Almutlaq J, Zhumekenov A A, Guan X, Han S, Liang L, Yi Z. Nature, 2018, 561: 88.
CrossRef Google scholar
[35]
Sangster R C, Irvine J W Jr The Journal of Chemical Physics, 195, 24: 670.
CrossRef Google scholar
[36]
Yuan P, He T, Zhou Y, Yin J, Zhang H, Zhang Y, Yuan X, Dong C, Huang R, Shao W, Chen S, Song X, Zhou R, Zheng N, Abulikemu M, Eddaoudi M, Bayindir M, Mohammed O F, Bakr O M. ACS Energy Lett., 2023, 8: 5088.
CrossRef Google scholar
[37]
Ma W, Su Y, Zhang Q, Deng C, Pasquali L, Zhu W, Tian Y, Ran P, Chen Z, Yang G, Liang G, Liu T, Zhu H, Huang P, Zhong H, Wang K, Peng S, Xia J, Liu H, Liu X, Yang Y M. Nat. Mater., 2022, 21: 210.
CrossRef Google scholar
[38]
Zhou Y, Chen J, Bakr O M, Mohammed O F. ACS Energy Lett., 2021, 6: 739.
CrossRef Google scholar
[39]
Han L, Wu Y, Fang K, Sweeney S, Roesner U K, Parrish M, Patel K, Walter T, Piermattei J, Trimboli A, Lefler J, Timmers C D, Yu X, Jin V X, Zimmermann M T, Mathison A J, Urrutia R, Ostrowski M C, Leone G. Nat. Commun., 2023, 14: 1.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/