Synthesis and Properties of Ferrocene Conjugated Macrocycles with Illusory Topology of the Penrose Stairs

Jindong Xu , Bin Lan , Lingyun Zhu , Hui Xu , Xinyu Chen , Wenjuan Li , Yaofeng Yuan , Jianfeng Yan , Yuanming Li

Chemical Research in Chinese Universities ›› : 1 -6.

PDF
Chemical Research in Chinese Universities ›› : 1 -6. DOI: 10.1007/s40242-024-4134-1
Article

Synthesis and Properties of Ferrocene Conjugated Macrocycles with Illusory Topology of the Penrose Stairs

Author information +
History +
PDF

Abstract

Polyferrocene macrocycles hold immense potential in the fields of molecular electronics and electrochemistry, primarily due to their multiple metal centers. However, developing highly efficient synthetic strategies for constructing these rings remains a significant challenge. In this study, we successfully synthesized triferrocenyl macrocycles using Pt-mediated coupling strategy and determined their configuration using single-crystal X-ray diffraction analysis, revealing a structure reminiscent of the Penrose Stair. We comprehensively investigated the macrocycle’s structure, photophysical properties, and employed density functional theory (DFT) calculations to gain further insights. Notably, this macrocycle exhibits several advantageous features, including a flexible structure, good solubility, and a highly efficient synthetic pathway.

Keywords

Conjugated macrocycle / Organometallic macrocycle / Pt-template method

Cite this article

Download citation ▾
Jindong Xu, Bin Lan, Lingyun Zhu, Hui Xu, Xinyu Chen, Wenjuan Li, Yaofeng Yuan, Jianfeng Yan, Yuanming Li. Synthesis and Properties of Ferrocene Conjugated Macrocycles with Illusory Topology of the Penrose Stairs. Chemical Research in Chinese Universities 1-6 DOI:10.1007/s40242-024-4134-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Matsui K, Segawa Y, Namikawa T, Kamada K, Itami K. Chem. Sci., 2013, 4: 84.

[2]

Matsui K, Segawa Y, Itami K. J. Am. Chem. Soc., 2014, 136: 16452.

[3]

Hoffmann V, le Pleux L, Häussinger D, Unke O T, Prescimone A, Mayor M. Organometallics, 2017, 36: 858.

[4]

Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science, 2019, 365: 272.

[5]

Nakanishi W, Matsuno T, Ichikawa J, Isobe H. Angew. Chem., Int. Ed., 2011, 50: 6048.

[6]

Hasegawa M, Ishida Y, Sasaki H, Ishioka S, Usui K, Hara N, Kitahara M, Imai Y, Mazaki Y. Chem. Eur. J., 2021, 27: 16225.

[7]

Penrose L S, Penrose R. Br. J. Psychol., 1958, 49: 31.

[8]

Penrose R. Leonardo, 1992, 25: 245.

[9]

Santi S, Orian L, Donoli A, Bisello A, Scapinello M, Benetollo F, Ganis P, Ceccon A. Angew. Chem. Int. Ed., 2008, 47: 5331.

[10]

Simkowa I, Latos-Grażyński L, Stępień M. Angew. Chem., Int. Ed., 2010, 49: 7665.

[11]

Inkpen M S, Scheerer S, Linseis M, White A J P, Winter R F, Albrecht T, Long N J. Nat. Chem., 201, 8: 825.

[12]

Hailes R L N, Oliver A M, Gwyther J, Whittell G R, Manners I. Chem. Soc. Rev., 201, 45: 5358.

[13]

Wilson L E, Hassenrück C, Winter R F, White A J P, Albrecht T, Long N J. Angew. Chem. Int. Ed., 2017, 56: 6838.

[14]

Camarasa-Gómez M, Hernangómez-Pérez D, Inkpen M S, Lovat G, Fung E D, Roy X, Venkataraman L, Evers F. Nano Lett., 2020, 20: 6381.

[15]

Liu C. Y., Patmore N. J., Meng M., Mixed-Valence Systems, 2023, 229.

[16]

Fukino T, Fujita N, Aida T. Org. Lett., 2010, 12: 3074.

[17]

Metzelaars M, Sanz S, Rawson J, Hartmann R, Schneider C M, Kögerler P. Chem. Commun., 2021, 57: 6660.

[18]

Farney E P, Chapman S J, Swords W B, Torelli M D, Hamers R J, Yoon T P. J. Am. Chem. Soc., 2019, 141: 6385.

[19]

Lan B, Xu J, Zhu L, Chen X, Kono H, Wang P, Zuo X, Yan J, Yagi A, Zheng Y, Chen S, Yuan Y, Itami K, Li Y. Precis. Chem., 2024, 2: 143.

[20]

Fuhrmann G., Debaerdemaeker T., Bäuerle P., Chem. Commun., 2003, 948.

[21]

Zhang F, Götz G, Winkler H D F, Schalley C A, Bäuerle P. Angew. Chem., Int. Ed., 2009, 48: 6632.

[22]

Yamago S, Watanabe Y, Iwamoto T. Angew. Chem. Int. Ed., 2010, 49: 757.

[23]

Yamago S, Kayahara E, Iwamoto T. Chem. Rec., 2014, 14: 84.

[24]

Hitosugi S, Nakanishi W, Yamasaki T, Isobe H. Nat. Commun., 2011, 2: 492.

[25]

Geiger W E, Barrière F. Acc. Chem. Res., 2010, 43: 1030.

[26]

Hildebrandt A, Miesel D, Lang H. Coordin. Chem. Rev., 2018, 371: 56.

[27]

Santi S, Orian L, Durante C, Bencze E Z, Bisello A, Donoli A, Ceccon A, Benetollo F, Crociani L. Chem. Eur. J., 2007, 13: 7933.

[28]

Hildebrandt A, Lang H. Organometallics, 2013, 32: 5640.

[29]

Gray H B, Sohn Y S, Hendrickson N. J. Am. Chem. Soc., 1971, 93: 3603.

[30]

Cuffe L, Hudson R D A, Gallagher J F, Jennings S, McAdam C J, Connelly R B T, Manning A R, Robinson B H, Simpson J. Organometallics, 2005, 24: 2051.

[31]

Zhang R, Wang Z, Wu Y, Fu H, Yao J. Org. Lett., 2008, 10: 3065.

[32]

Lv Y, Lin J, Song K, Song X, Zang H, Zang Y, Zhu D. Sci. Adv., 2021, 7: eabk3095.

[33]

Lin J, Wang S, Zhang F, Yang B, Du P, Chen C, Zang Y, Zhu D. Sci. Adv., 2022, 8: eade4692.

[34]

Lin J, Lv Y, Song K, Song X, Zang H, Du P, Zang Y, Zhu D. Nat. Commun., 2023, 14: 293.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/