Design, Synthesis and Pharmacological Evaluation of Novel 4-Phenoxyquinoline Derivatives as VEGFR2 Kinase Inhibitors for Tumor Treatment

Wei Jiang, Jiayan Chen, Haifeng Wang, Aiqi Xue, Xinyang Zhang, Jichi Guan, Lulu Wei, Jianfeng Cai, Yong Hu, Dan Liu

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 66-78.

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 66-78. DOI: 10.1007/s40242-024-4132-3
Article

Design, Synthesis and Pharmacological Evaluation of Novel 4-Phenoxyquinoline Derivatives as VEGFR2 Kinase Inhibitors for Tumor Treatment

Author information +
History +

Abstract

Vascular endothelial growth factor 2 (VEGFR2) plays a vital role in regulating of tumor metastasis and angiogenesis, which has emerged as one of the effective targets for clinical tumor therapy. Herein, a series of novel facilely accessible 4-phenoxyquinoline derivatives was prepared and assessed for their antitumor activity against three human tumor cell lines (SGC-7901, HepG2 and A549). Among these compounds, 6a, 6b and 6c show strong antitumor activity on HepG2 cells [the drug concentration of eliminating half of tumor cells (IC50)=9.33, 1.84, 8.54 μmol/L]. Notably, compound 6b shows potent selective inhibitory activity against VEGFR2 kinase with an IC50 value of 4.66 nmol/L. The excellent anti-angiogenesis capability of compound 6b was confirmed by tube formation and chick chorioallantoic membrane (CAM) assay. In vivo studies confirmed that compound 6b was able to inhibit tumor growth in HepG2 xenografts of BALB/c nude mice without obvious side or toxic effects. The results demonstrated that compound 6b exhibited remarkable anti-angiogenesis and tumor growth inhibitory effects with less toxicity in vitro and in vivo models. These findings highlighted the potential of compound 6b as a promising VEGFR2 kinase inhibitor for the development of antitumor drugs.

Cite this article

Download citation ▾
Wei Jiang, Jiayan Chen, Haifeng Wang, Aiqi Xue, Xinyang Zhang, Jichi Guan, Lulu Wei, Jianfeng Cai, Yong Hu, Dan Liu. Design, Synthesis and Pharmacological Evaluation of Novel 4-Phenoxyquinoline Derivatives as VEGFR2 Kinase Inhibitors for Tumor Treatment. Chemical Research in Chinese Universities, 2024, 41(1): 66‒78 https://doi.org/10.1007/s40242-024-4132-3

References

[[1]]
Hendriks W, Bourgonje A, Leenders W, Pulido R Molecules, 2018, 23: 395.
CrossRef Google scholar
[[2]]
Jiao Q, Bi L, Ren Y, Song S, Wang Q Mol. Cancer., 2018, 17: 36.
CrossRef Google scholar
[[3]]
Bhanumathy K, Balagopal A, Vizeacoumar F S, Vizeacoumar F J, Freywald A, Giambra V Cancers (Basel)., 2021, 13: 184.
CrossRef Google scholar
[[4]]
Patterson H, Nibbs R, McInnes I, Siebert S Clin. Exp. Immunol., 2014, 176: 1.
CrossRef Google scholar
[[5]]
Ahn R, Ursini-Siegel J Int. J. Mol. Sci., 2021, 22: 2608.
CrossRef Google scholar
[[6]]
Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, Ghanaatian V, Rezaei-Tazangi F, Baziyar P, Ahmadi A, Hamblin M R, Aref A R Cell Mol. Life Sci., 2023, 80: 104.
CrossRef Google scholar
[[7]]
Jin H, Dan H-G, Rao G-W Heterocyclic Communications, 2018, 24: 1.
CrossRef Google scholar
[[8]]
Yamaoka T, Kusumoto S, Ando K, Ohba M, Ohmori T Int. J. Mol. Sci., 2018, 19: 3491.
CrossRef Google scholar
[[9]]
Liu Y, Li Y, Wang Y, Lin C, Zhang D, Chen J, Ouyang L, Wu F, Zhang J, Chen L Journal of Hematology & Oncology, 2022, 15: 89.
CrossRef Google scholar
[[10]]
Qin S, Li A, Yi M, Yu S, Zhang M, Wu K J. Hematol Oncol., 2019, 12: 27.
CrossRef Google scholar
[[11]]
Shaik F, Cuthbert G A, Homer-Vanniasinkam S, Muench S P, Ponnambalam S, Harrison M A Biomolecules, 2020, 10: 1673.
CrossRef Google scholar
[[12]]
Chen J-C, Chang Y-W, Hong C-C, Yu Y-H, Su J-L Int. J. Mol. Sci., 2012, 14: 88.
CrossRef Google scholar
[[13]]
Malekan M, Ebrahimzadeh M A Curr. Top. Med. Chem., 2022, 22: 891.
CrossRef Google scholar
[[14]]
Adel M, Serya R A T, Lasheen D S, Abouzid K A M Bioorg. Chem., 2018, 81: 612.
CrossRef Google scholar
[[15]]
Cheng K, Liu C-F, Rao G-W Curr. Med. Chem., 2021, 28: 2540.
CrossRef Google scholar
[[16]]
Kaufman N E M, Dhingra S, Jois S D Molecules, 2021, 26: 1076.
CrossRef Google scholar
[[17]]
Falcon B L, Chintharlapalli S, Uhlik M T, Pytowski B Pharmacol Ther., 2016, 164: 204.
CrossRef Google scholar
[[18]]
Mabeta P, Steenkamp V Int. J. Mol. Sci., 2022, 23: 15585.
CrossRef Google scholar
[[19]]
Ntanasis-Stathopoulos I, Fotopoulos G, Tzanninis I-G, Kotteas EA Cancer Invest., 2016, 34: 313.
CrossRef Google scholar
[[20]]
Farghaly T A, Al-Hasani W A, Abdulwahab H G Expert Opin. Ther. Pat., 2021, 31: 989.
CrossRef Google scholar
[[21]]
Wang X, Bove A M, Simone G, Ma B Front Cell Dev. Biol., 2020, 8: 599281.
CrossRef Google scholar
[[22]]
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S Sig. Transduct Target Ther., 2021, 6: 1.
CrossRef Google scholar
[[23]]
Auti P S, George G, Paul A T RSC Adv., 2020, 10: 41353.
CrossRef Google scholar
[[24]]
Hameed A, Al-Rashida M, Uroos M, Ali S A, Arshia I M, Khan K M Expert Opin. Ther. Pat., 2018, 28: 281.
CrossRef Google scholar
[[25]]
Jafari E, Khajouei M R, Hassanzadeh F, Hakimelahi G H, Khodarahmi G A Research in Pharmaceutical Sciences, 2016, 11: 1
[[26]]
Peng F-W, Liu D-K, Zhang Q-W, Xu Y-G, Shi L Expert Opin. Ther. Pat., 2017, 27: 987.
CrossRef Google scholar
[[27]]
Das R, Mehta D K, Dhanawat M Anticancer Agents Med. Chem., 2021, 21: 1350.
CrossRef Google scholar
[[28]]
Martorana A, La Monica G, Lauria A Molecules, 2020, 25: 4279.
CrossRef Google scholar
[[29]]
Geller G, Laskin J, Cheung W Y, Ho C Thyroid Res., 2017, 10: 6.
CrossRef Google scholar
[[30]]
Xiao Z, Chu C, Zhou L, Zhou Z, Zhang Q, Yang F, Yang Z, Zheng P, Xu S, Zhu W Bioorg. Med. Chem., 2020, 28: 115669.
CrossRef Google scholar
[[31]]
Momeny M, Alishahi Z, Eyvani H, Esmaeili F, Zaghal A, Ghaffari P, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH Cell Oncol. (Dordr.), 2020, 43: 81.
CrossRef Google scholar
[[32]]
Orbegoso C, Marquina G, George A, Banerjee S Expert Opin. Pharmacother., 2017, 18: 1637.
CrossRef Google scholar
[[33]]
Zhao B, Lei F, Wang C, Zhang B, Yang Z, Li W, Zhu W, Xu S Molecules, 2018, 23: 1553.
CrossRef Google scholar
[[34]]
Liu D, Luan T, Kong J, Zhang Y, Wang H-F Molecules, 2015, 21: E21.
CrossRef Google scholar
[[35]]
Liu D, Xue A, Liu Z, Zhang Y, Peng P, Wang H Letters in Drug Design & Discovery., 2019, 16: 663.
CrossRef Google scholar
[[36]]
Wei H, Duan Y, Gou W, Cui J, Ning H, Li D, Qin Y, Liu Q, Li Y Eur. J. Med Chem., 2019, 181: 111552.
CrossRef Google scholar
[[37]]
Berrino E, Michelet B, Martin-Mingot A, Carta F, Supuran C T, Thibaudeau S Angewandte Chemie International Edition, 2021, 60: 23068.
CrossRef Google scholar
[[38]]
Hevey R Chemistry, 2021, 27: 2240.
CrossRef Google scholar
[[39]]
Richardson P Expert Opin. Drug Discov., 2021, 16: 1261.
CrossRef Google scholar
[[40]]
Peng S, Wang Y, Peng H, Chen D, Shen S, Peng B, Chen M, Lencioni R, Kuang M Hepatology, 2014, 60: 1264.
CrossRef Google scholar
[[41]]
Goel S, Chen F, Hong H, Valdovinos H F, Hernandez R, Shi S, Barnhart T E, Cai W ACS Appl. Mater. Interfaces, 2014, 6: 21677.
CrossRef Google scholar
[[42]]
Li J, Wu Y, Wang D, Zou L, Fu C, Zhang J, Leung G P H Pharmacol Res., 2019, 146: 104313.
CrossRef Google scholar
[[43]]
Ferrara N, Gerber H-P, LeCouter J Nat. Med., 2003, 9: 669.
CrossRef Google scholar
[[44]]
Olsson A-K, Dimberg A, Kreuger J, Claesson-Welsh L Nat. Rev. Mol. Cell Biol., 2006, 7: 359.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/