Impact of Various Silicon Sources on the Synthesis of Mordenite and Differences in the Carbonylation Reaction of Dimethyl Ether

Long Chen , Yunzheng Wang , Jiangang Lv , Weimin Yang

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 59 -65.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 59 -65. DOI: 10.1007/s40242-024-4131-4
Article

Impact of Various Silicon Sources on the Synthesis of Mordenite and Differences in the Carbonylation Reaction of Dimethyl Ether

Author information +
History +
PDF

Abstract

This study introduces an innovative method for synthesizing mordenite (MOR) by employing a combination of water glass and fumed silica as the silica source. The zeolite produced through this method exhibits a smaller grain size, a larger specific surface area, and a greater number of Brønsted acid sites compared to the conventionally synthesized mordenite using silica sol. Furthermore, the chemical environment of framework Al in MOR zeolites is influenced by different silica sources, leading to varied acid properties between the two MOR zeolites, which results in an enhanced activity of dimethyl ether carbonylation from 50% to over 83%.

Keywords

Mordenite / Silica source / DME carbonylation

Cite this article

Download citation ▾
Long Chen, Yunzheng Wang, Jiangang Lv, Weimin Yang. Impact of Various Silicon Sources on the Synthesis of Mordenite and Differences in the Carbonylation Reaction of Dimethyl Ether. Chemical Research in Chinese Universities, 2024, 41(1): 59-65 DOI:10.1007/s40242-024-4131-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GoldembergJ Science, 2007, 3155813: 808

[2]

LiY, SunQ, HuangS, ChengZ, CaiK, LvJ, MaX Catal. Today, 2018, 311: 81

[3]

XiaY, LiZ, LiY, CaiK, LiuY, LvJ, HuangS, MaX Catal. Today, 2022, 405: 152

[4]

XingC L, JianGY, WuG Z, ZhenH Fuel, 2004, 8314/8315: 2013

[5]

ChenN, ZhangJ, GuY, ZhangW, CaoK, CuiW, XuS, FanD, TianP, LiuZ Journal of Materials Chemistry A, 2022, 1015: 8334

[6]

ReuleA A, SemaginaN ACS Catalysis, 2016, 68: 4972

[7]

GaoF, ZhangR, LiuJ, GaoZ, HuangW J A S S Appl. Surf. Sci., 2024, 661: 160072

[8]

ZhangL-Y, FengX-B, HeZ-M, ChenF, SuC, ZhaoX-Y, CaoJ-P, HeY-R Chem. Eng. Sci., 2022, 256: 117671

[9]

YangG, SanX, JiangN, TanakaY, LiX, JinQ, TaoK, MengF, TsubakiN Catal. Today, 2011, 1641: 425

[10]

LiX, SanX, ZhangY, IchiiT, MengM, TanY, TsubakiN ChemSusChem, 2010, 310: 1192

[11]

RasmussenD B, ChristensenJ M, TemelB, StudtF, MosesP G, RossmeislJ, RiisagerA, JensenA D Angew. Chem. Int. Ed., 2015, 5425: 7261

[12]

LiL, WangQ, LiuH, SunT, FanD, YangM, TianP, LiuZ ACS Appl. Mater. Interfaces, 2018, 1038: 32239

[13]

CaoK, FanD, LiL, FanB, WangL, ZhuD, WangQ, TianP, LiuZ ACS Catalysis, 2020, 105: 3372

[14]

CheungP, BhanA, SunleyG J, IglesiaE Angew. Chem. Int. Ed., 2006, 11810: 1647

[15]

DiemerR B, LuybenW L Ind. Eng. Chem. Res., 2010, 4923: 12224

[16]

CheungP, BhanA, SunleyG J, LawD J, IglesiaE J. Catal., 2007, 2451: 110

[17]

MolinerM, MartínezC, CormaA Angew. Chem. Int. Ed., 2015, 5412: 3560

[18]

BeckerK A, KargeH G, StreubelW D J. Catal., 1973, 283: 403

[19]

CheungP, BhanA, SunleyG J, LawD J, IglesiaE Academic Press, 2007, 1: 110

[20]

BoronatM, Martínez-SánchezC, LawD, CormaA J. Am. Chem. Soc., 2008, 13048: 16316

[21]

LiB, XuJ, HanB, WangX, QiG, ZhangZ, WangC, DengF The Journal of Physical Chemistry C, 2013, 11711: 5840

[22]

RasmussenD B, ChristensenJ M, TemelB, StudtF, MosesP, RossmeislJ, RiisagerA, JensenA D Catalysis Science & Technology, 2017, 75: 1141

[23]

LiuR, FanB, ZhiY, LiuC, XuS, YuZ, LiuZ Angew. Chem. Int. Ed., 2022, 6142: e202210658

[24]

ChaouatiN, SoualahA, HusseinI, ComparotJ, PinardL Applied Catalysis A: General, 2016, 526: 95

[25]

Van LaakA N, SagalaS L, ZečevićJ, FriedrichH, De JonghP E, De JongK P J. Catal., 2010, 2761: 170

[26]

JinY, LiY, WangH, ZhaoS, LvZ, DuX, SunY Microporous Mesoporous Mater., 2012, 153: 144

[27]

SinghB K, KimY, BaekS B, MeenaA, SultanS, KwakJ H, KimK S J. Ind. Eng. Chem., 2018, 57: 363

[28]

SaxenaS K, ViswanadhamN Appl. Surf. Sci., 2017, 392: 384

[29]

BoveriM, Márquez-ÁlvarezC, LabordeM Á, SastreE Catal. Today, 2006, 1142/1143: 217

[30]

WangM, HuangS, J, ChengZ, LiY, WangS, MaX Appl. Surf. Sci., 2016, 379: 1530

[31]

WangX, LiR, YuC, LiuY, ZhangL, XuC, ZhouH J F Catal. Today, 2019, 239: 794

[32]

XueH, HuangX, DitzelE, ZhanE, MaM, ShenW Chin. J. Catal., 2013, 348: 1496

[33]

MaM, HuangX, ZhanE, ZhouY, XueH, ShenW Journal of Materials Chemistry A, 2017, 519: 8887

[34]

LiuM, JiaW, LiJ, WangY, MaS, ChenH, ZhuZ Catal. Lett., 2016, 146: 249

[35]

WangY, ZhangY, LiuW, YuQ, LiuZ, XuS, AnJ, LiX, ZhuX J Microporous Mesoporous Mater., 2022, 346: 112282

[36]

ChenN, ZhangJ, GuY, ZhangW, CaoK, CuiW, XuS, FanD, TianP, LiuZM Journal of Materials Chemistry A, 2022, 1015: 8334

[37]

WenF, DingX, FangX, LiuH, ZhuW Catal. Commun., 2021, 154: 106309

[38]

LiuY, ZhaoN, XianH, ChengQ, TanY, TsubakiN, LiX ACS Appl. Mater. Interfaces, 2015, 716: 8398

[39]

KimJ, JoC, LeeS, RyooR Journal of Materials Chemistry A, 2014, 230: 11905

[40]

KhalilU, MurazaO Microporous Mesoporous Mater., 2016, 232: 211

[41]

CaoK, FanD, ZengS, FanB, ChenN, GaoM, ZhuD, WangL, TianP, LiuZ Chin. J. Catal., 2021, 429: 1468

[42]

WangJ, ChengX, GuoJ, XuX, LongY Microporous Mesoporous Mater., 2006, 961–963: 307

[43]

LiuR, ZengS, SunT, XuS, YuZ, WeiY, LiuZ ACS Catalysis, 2022, 128: 4491

[44]

ZhouH, ZhuW, ShiL, LiuH, LiuS, XuS, NiY, LiuY, LiL, LiuZ Catalysis Science & Technology, 2015, 53: 1961

[45]

ZhaoP, QianW X, MaH F, ShengH B, ZhangH T, YingW Y Catalysis Letters, 2021, 151: 940

[46]

LiuJ, XueH, HuangX, Pei-HaoW U, ShenW Chin. J. Catal., 2010, 317: 729

[47]

WangY A, GaoY, ChuW F, ZhaoD P, ChenF C, ZhuX X, LiX J, LiuS L, XieS J, XuL Y Journal of Materials Chemistry A, 2019, 713: 7573

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/