Lewis Acid-catalyzed Regioselective Addition of Allenoates to Indoles for Synthesis of Bisindolylesters

Fuyu Xie, Jianghua He, Yuetao Zhang

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 48-58.

Chemical Research in Chinese Universities ›› 2024, Vol. 41 ›› Issue (1) : 48-58. DOI: 10.1007/s40242-024-4128-z
Article

Lewis Acid-catalyzed Regioselective Addition of Allenoates to Indoles for Synthesis of Bisindolylesters

Author information +
History +

Abstract

Indole derivatives, especially bisindolylesters, have attracted intense attention due to their important applications in medicinal chemistry and organic synthesis. Here we develop a Lewis acid-catalyzed efficient and regioselective strategy to prepare a series of symmetric and unsymmetric bisindolylesters in high to excellent yields under mild conditions. The systematic investigations, which include stoichiometric nuclear magnetic resonance (NMR) experiments and structural characterization of intermediates, have provided insights into the possible reaction mechanism for this B(C6F5)3-catalyzed addition reaction. Moreover, the sequential employment of Al(C6F5)3 and B(C6F5)3 as catalysts enabled us to successfully prepare the unsymmetric bisindolyl-compounds in one-pot two-step manner without the separation step.

Cite this article

Download citation ▾
Fuyu Xie, Jianghua He, Yuetao Zhang. Lewis Acid-catalyzed Regioselective Addition of Allenoates to Indoles for Synthesis of Bisindolylesters. Chemical Research in Chinese Universities, 2024, 41(1): 48‒58 https://doi.org/10.1007/s40242-024-4128-z

References

[[1]]
Howard M F, Bina X R, Bina J Infect. Immun., 2019, 87: e00776-18.
CrossRef Google scholar
[[2]]
Karamyan A J K, Hamann M T Chem. Rev., 2010, 110: 4489.
CrossRef Google scholar
[[3]]
Wen J, Shi Z Acc. Chem. Res., 2021, 54: 1723.
CrossRef Google scholar
[[4]]
Bandini M, Eichholzer A Angew. Chem. Int. Ed., 2009, 48: 9608.
CrossRef Google scholar
[[5]]
Lee J Nutr. Cancer., 2019, 71: 992.
CrossRef Google scholar
[[6]]
Ichite N, Chougule M B, Jackson T, Fulzele S V, Safe S, Singh M Clin. Cancer Res., 2009, 15: 543.
CrossRef Google scholar
[[7]]
Zong J, Wu Q Q, Zhou H, Zhang J Y, Yuan Y, Bian Z Y, Deng W, Dai J, Li F F, Xu M, Fang Y, Tang Q Z Mol. Med. Rep., 2015, 12: 1247.
CrossRef Google scholar
[[8]]
Priore D G, Gudipudi D K, Montemarano N, Restivo A M, Stega J M, Arslan A A Gynecol. Oncol., 2010, 116: 464.
CrossRef Google scholar
[[9]]
Kang J, Gao Y, Zhang M, Ding X, Wang Z, Ma D, Wang Q J. Agric. Food Chem., 2020, 68: 7839.
CrossRef Google scholar
[[10]]
Roy S, Gajbhiye R, Mandal M, Pal C, Meyyapan A, Mukherjee J, Jaisankar P Med. Chem. Res., 2014, 23: 1371.
CrossRef Google scholar
[[11]]
Osawa T, Namiki M, Suzuki K, Mitsuoka T Mutat. Res., 1983, 122: 299.
CrossRef Google scholar
[[12]]
Bartoli G, Bosco M, Foglia G, Giuliani A, Marcantoni E, Sambri L Synthesis, 2004, 6: 0895
[[13]]
Yang T, Lu H, Shu Y, Ou Y, Hong L, Au C T, Qiu R Org. Lett., 2020, 22: 827.
CrossRef Google scholar
[[14]]
Lee S O, Choi J, Kook S, Lee S Y Org. Biomol. Chem., 2020, 18: 9060.
CrossRef Google scholar
[[15]]
Simha P R, Mangali M S, Gari D K, Venkatapuram P, Adivireddy P J. Heterocyclic Chem., 2017, 54: 2717.
CrossRef Google scholar
[[16]]
Budania S, Shelke G M, Kumar A Synth. Commun., 2017, 47: 646.
CrossRef Google scholar
[[17]]
Kothandapani J, Ganesan A, Mani G K, Kulandaisamy A J, Rayappan J B B, Ganesan S S Tetrahedron Lett., 2016, 57: 3472.
CrossRef Google scholar
[[18]]
Veisi H, Maleki B, Eshbala F H, Veisi H, Masti R, Ashrafi S S, Baghayeri M RSC Adv., 2014, 4: 30683.
CrossRef Google scholar
[[19]]
Hou C, Sun C, Wang C, Jia X, Chang W ACS Sustainable Chem. Eng., 2013, 1: 549.
CrossRef Google scholar
[[20]]
Reddy B V S, Rajeswari N, Sarangapani M, Prashanthi Y, Ganji R J, Addlagatta A Bioorg. Med. Chem. Lett., 2012, 22: 2460.
CrossRef Google scholar
[[21]]
Tayebee R, Nehzat F, Seresht E R, Mohammadi F Z, Rafiee E J. Mol. Catal. A: Chem., 2011, 351: 154.
CrossRef Google scholar
[[22]]
Azizian J, Mohammadi A A, Karimi N, Mohammadizadeh M R, Karimi A R Catal. Commun., 2006, 7: 752.
CrossRef Google scholar
[[23]]
Jat K P, Dabaria K K, Bai R, Yadav L, Badsara S S J. Org. Chem., 2022, 87: 12975.
CrossRef Google scholar
[[24]]
Zhao Y S, Ruan H L, Wang X Y, Chen C, Song P F, C W, Zou L W RSC Adv., 2019, 9: 40168.
CrossRef Google scholar
[[25]]
Lafzi F, Kilic H, Saracoglu N J. Org. Chem., 2019, 84: 12120.
CrossRef Google scholar
[[26]]
Chinta B S, Baire B Tetrahedron, 2016, 72: 8106.
CrossRef Google scholar
[[27]]
Swetha A, Babu B M, Meshram H M Tetrahedron Lett., 2015, 56: 1775.
CrossRef Google scholar
[[28]]
Chakraborti A K, Roy S R, Kumar D, Chopra P Green Chem., 2008, 10: 1111.
CrossRef Google scholar
[[29]]
Nair V, Abhilash K G, Vidya N Org. Lett., 2005, 7: 5857.
CrossRef Google scholar
[[30]]
Ji S J, Wang S Y, Zhang Y, Loh T P Tetrahedron, 2004, 60: 2051.
CrossRef Google scholar
[[31]]
Nagarajan R, Perumal P T Tetrahedron, 2002, 58: 1229.
CrossRef Google scholar
[[32]]
Santos A S, Ferro R D, Viduedo N, Maia L B, Silva A M S, Marques M M B ChemistryOpen, 2023, 12: e202200265.
CrossRef Google scholar
[[33]]
Biswas N, Sharma R, Srimani D Adv. Synth. Catal., 2020, 362: 2902.
CrossRef Google scholar
[[34]]
Arun V, Roy L, Sarkar S D Chem. Eur. J., 2020, 26: 16649.
CrossRef Google scholar
[[35]]
Sun C, Zou X, Li F Chem. Eur. J., 2013, 19: 14030.
CrossRef Google scholar
[[36]]
Tyagi A, Khan J, Yadav N, Mahato R, Hazra C K J. Org. Chem., 2022, 87: 10229.
CrossRef Google scholar
[[37]]
More A A, Szpilman A M Org. Lett., 2020, 22: 3759.
CrossRef Google scholar
[[38]]
Yuan Z, Chen S, Weng Z Org. Chem. Front., 2020, 7: 482.
CrossRef Google scholar
[[39]]
Lei L S, Wang B W, Jin D P, Gao Z P, Liang H, Wang S H, Xu X T, Zhang K, Zhang X Y Adv. Synth. Catal., 2020, 362: 2870.
CrossRef Google scholar
[[40]]
Cheng L T, Luo S Q, Hong B C, Chen C L, Li W S, Lee G H Org. Biomol. Chem., 2020, 18: 6247.
CrossRef Google scholar
[[41]]
Abe T, Nakamura S, Yanada R, Choshi T, Hibino S, Ishikura M Org. Lett., 2013, 15: 3622.
CrossRef Google scholar
[[42]]
Alonso I, Esquivias J, Arrayás R G, Carretero J C J. Org. Chem., 2008, 73: 6401.
CrossRef Google scholar
[[43]]
Rueping M, Nachtsheim B J, Moreth S A, Bolte M Angew. Chem. Int. Ed., 2008, 47: 593.
CrossRef Google scholar
[[44]]
Kumar S, Kumar V, Chimni S S Tetrahedron Lett., 2003, 44: 2101.
CrossRef Google scholar
[[45]]
Jadhav S D, Bakshi D, Singh A J. Org. Chem., 2015, 80: 10187.
CrossRef Google scholar
[[46]]
Jeon J, Ryu H, Lee C, Cho D, Baik M H, Hong S J. Am. Chem. Soc., 2019, 141: 10048.
CrossRef Google scholar
[[47]]
Young P C, Hadfield M S, Arrowsmith L, Macleod K M, Mudd R J, Hore J A J, Lee A L Org. Lett., 2012, 14: 898.
CrossRef Google scholar
[[48]]
McLean E B, Cutolo F M, Cassidy O J, Burns D J, Lee A L Org. Lett., 2020, 22: 6977.
CrossRef Google scholar
[[49]]
Liu T W, Zhang S T, He J H, Zhang Y T Chem. J. Chinese Universities, 2019, 40: 719
[[50]]
Ling F, Xiao L, Fang L, Feng C, Xie Z, Lv Y, Zhong W Org. Biomol. Chem., 2018, 16: 9274.
CrossRef Google scholar
[[51]]
An L T, Cai J J, Pan X Q, Chen T M, Zou J P, Zhang W Tetrahedron Lett., 2015, 56: 3996.
CrossRef Google scholar
[[52]]
Xia D, Wang Y, Du Z, Zheng Q Y, Wang C Org. Lett., 2012, 14: 588.
CrossRef Google scholar
[[53]]
Huang X, Ma S Acc. Chem. Res., 2019, 52: 1301.
CrossRef Google scholar
[[54]]
Tao X, Wolke C, Daniliuc C G, Kehr G, Erker G Chem. Sci., 2019, 10: 2478.
CrossRef Google scholar
[[55]]
Chen Z, Dong V M Nat. Commun., 2017, 8: 784.
CrossRef Google scholar
[[56]]
Alcaide B, Almendros P Chem. Soc. Rev., 2014, 43: 2886.
CrossRef Google scholar
[[57]]
Ma S, Yu S Org. Lett., 2005, 7: 5063.
CrossRef Google scholar
[[58]]
Munoz M P, Torre M C D L, Sierra M A Chem. Eur. J., 2012, 18: 4499.
CrossRef Google scholar
[[59]]
Munoz M P, Torre M C D L, Sierra M A Adv. Synth. Catal., 2010, 352: 2189.
CrossRef Google scholar
[[60]]
Sun Q, Daniliuc C G, Bergander K, Kehr G, Erker G J. Am. Chem. Soc., 2021, 143: 14992.
CrossRef Google scholar
[[61]]
Stephan D W J. Am. Chem. Soc., 2021, 143: 20002.
CrossRef Google scholar
[[62]]
Légaré M A, Pranckevicius C, Braunschweig H Chem. Rev., 2019, 119: 8231.
CrossRef Google scholar
[[63]]
Xie F, He J, Zhang Y Org. Chem. Front., 2023, 10: 3861.
CrossRef Google scholar
[[64]]
Liu T, He J, Zhang Y Chin. J. Chem., 2023, 41: 2446.
CrossRef Google scholar
[[65]]
Liu T, Yang M, He J, Li S, Zhang Y Nat. Commun., 2023, 14: 703.
CrossRef Google scholar
[[66]]
Zhang S, Xu H, He J, Zhang Y Adv. Synth. Catal., 2021, 363: 5319.
CrossRef Google scholar
[[67]]
Basak S, Montoya A A, Winfrey L, Melen R L, Morrill L C, Pulis A P ACS Catal., 2020, 10: 4835.
CrossRef Google scholar
[[68]]
Stephan D W Chem, 2020, 6: 1520.
CrossRef Google scholar
[[69]]
Zhang S, Han Y, He J, Zhang Y J. Org. Chem., 2018, 83: 1377.
CrossRef Google scholar
[[70]]
Han Y, Zhang S, He J, Zhang Y J. Am. Chem. Soc., 2017, 139: 7399.
CrossRef Google scholar
[[71]]
Oestreich M, Hermeke J, Mohr J Chem. Soc. Rev., 2015, 44: 2202.
CrossRef Google scholar
[[72]]
Song Y, He J, Zhang Y, Gilsdorf R A, Chen E Y X Nat. Chem., 2023, 15: 366.
CrossRef Google scholar
[[73]]
Zhao W, Wang Q, He J, Zhang Y Macromol. Rapid Commun., 2022, 43: 2200088.
CrossRef Google scholar
[[74]]
Zhao W, He J, Zhang Y Sci. Bull., 2019, 64: 1830.
CrossRef Google scholar
[[75]]
Bai Y, Zhang Y Acta Polym. Sin., 2019, 50: 233
[[76]]
Hu L, Zhao W, He J, Zhang Y Molecules, 2018, 23: 665.
CrossRef Google scholar
[[77]]
Keahler T, Melen R L Cell Rep. Phys. Sci., 2021, 2: 100595.
CrossRef Google scholar
[[78]]
Chen J, Chen E Y X Angew. Chem. Int. Ed., 2015, 54: 6842.
CrossRef Google scholar
[[79]]
Chen E. Y. X., e-Encycl. Reag. Org. Syn., 2012, DOI: https://doi.org/10.1002/047084289X.rn01382.
[[80]]
Zhang Y, Miyake G M, John M G, Falivene L, Caporaso L, Cavallo L, Chen E Y X Dalton Trans., 2012, 41: 9119.
CrossRef Google scholar
[[81]]
Chen E Y X Top. Curr. Chem., 2012, 334: 239.
CrossRef Google scholar
[[82]]
Xie F, He J, Zhang Y ChemistrySelect, 2024, 9: e202400477.
CrossRef Google scholar
[[83]]
Liu Z, Tu X S, Guo L T, Wang X C Chem. Sci., 2020, 11: 11548.
CrossRef Google scholar
[[84]]
Han Y, Zhang S, He J, Zhang Y ACS Catal., 2018, 8: 8765.
CrossRef Google scholar
[[85]]
Li C, Zhao W, He J, Zhang Y, Zhang W Angew. Chem. Int. Ed., 2022, 61: e202202448.
CrossRef Google scholar
[[86]]
Wan Y, He J, Zhang Y, Chen E Y X Angew. Chem. Int. Ed., 2022, 61: e202114946.
CrossRef Google scholar
[[87]]
Bai Y, Wang H, He J, Zhang Y, Chen E Y X Nat. Commun., 2021, 12: 4874.
CrossRef Google scholar
[[88]]
Bai Y, Wang H, He J, Zhang Y Angew. Chem. Int. Ed., 2020, 59: 11613.
CrossRef Google scholar
[[89]]
Bai Y, He J, Zhang Y Angew. Chem. Int. Ed., 2018, 57: 17230.
CrossRef Google scholar
[[90]]
Wang Q, Zhao W, Zhang S, He J, Zhang Y, Chen E Y X ACS Catal., 2018, 8: 3571.
CrossRef Google scholar
[[91]]
Wang Q, Zhao W, He J, Zhang Y, Chen E Y X Macromolecules, 2017, 50: 123.
CrossRef Google scholar
[[92]]
Maier A F G, Tussing S, Schneider T, Flörke U, Qu Z W, Grimme S, Paradies J Angew. Chem. Int. Ed., 2016, 55: 12219.
CrossRef Google scholar
[[93]]
Huang Z, Yang X Q, Yang F, Lu T, Zhou Q Org. Lett., 2017, 19: 3524.
CrossRef Google scholar
[[94]]
Lu X, Zhu J, Huang Y Org. Lett., 2022, 24: 8816.
CrossRef Google scholar
[[95]]
Lehmann M, Schulz A, Villinger A Angew. Chem. Int. Ed., 2009, 48: 7444.
CrossRef Google scholar
[[96]]
Ceppi E, Eckhardt W, Grob C A Tetrahedron Lett., 1973, 14: 3627.
CrossRef Google scholar
[[97]]
Zhang Y C, Jiang F, Shi F Acc. Chem. Res., 2020, 53: 425.
CrossRef Google scholar
[[98]]
Cheng Z, Li M, Zhang X Y, Sun Y, Yu Q L, Zhang X H, Lu Z Angew. Chem. Int. Ed., 2023, 62: e202215029.
CrossRef Google scholar
[[99]]
Cheng Z, Guo J, Lu Z Chem. Commun., 2020, 56: 2229.
CrossRef Google scholar
[[100]]
Zhu W R, Su Q, Deng X Y, Liu J S, Zhong T, Meng S S, Yi J T, Weng J, Lu G Chem. Sci., 2022, 13: 170.
CrossRef Google scholar
[[101]]
Guo G, Yuan Y, Bao X, Cao X, Sang T, Wang J, Huo C Org. Lett., 2021, 23: 6936.
CrossRef Google scholar
[[102]]
Yuan L, Palmieri A, Petrini M Adv. Synth. Catal., 2020, 362: 1509.
CrossRef Google scholar
[[103]]
Ling Y, An D, Zhou Y Y, Rao W Org. Lett., 2019, 21: 3396.
CrossRef Google scholar
[[104]]
Pillaiyar T, Uzair M, Ullah S, Schnakenburg G, Müller C E Adv. Synth. Catal., 2019, 361: 4286.
CrossRef Google scholar
[[105]]
Xiao J, Wen H, Wang L, Xu L, Hao Z, Shao C L, Wang C Y Green Chem., 2016, 18: 1032.
CrossRef Google scholar
[[106]]
Li D, Wu T, Liang K, Xia C Org. Lett., 2016, 18: 2228.
CrossRef Google scholar
[[107]]
Zhou M H, Jiang Y J, Fan Y S, Gao Y, Liu S, Zhang S Q Org. Lett., 2014, 16: 1096.
CrossRef Google scholar
[[108]]
Sun F L, Zheng X J, Gu Q, He Q L, You S L Eur. J. Org. Chem., 2010, 2010: 47.
CrossRef Google scholar
[[109]]
Yu H, Yu Z Angew. Chem. Int. Ed., 2009, 48: 2929.
CrossRef Google scholar
[[110]]
Zhang Y, Zhang S X, Fu L N, Guo Q X ChemCatChem., 2017, 9: 3107.
CrossRef Google scholar
[[111]]
Pathak T P, Osiak J G, Vaden R M, Welm B E, Sigman M S Tetrahedron, 2012, 68: 5203.
CrossRef Google scholar
[[112]]
Guo X, Pan S, Liu J, Li Z J. Org. Chem., 2009, 74: 8848.
CrossRef Google scholar
[[113]]
Kaiser H M, Lo W F, Riahi A M, Spannenberg A, Beller M, Tse M K Org. Lett., 2006, 8: 5761.
CrossRef Google scholar
[[114]]
Chakrabarty M, Basak R, Ghosh N Tetrahedron Lett., 2001, 42: 3913.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/