A Scalable Pillar Layered Metal-Organic Framework for Natural Gas Purification

Nan Lu , Lan Lan , Qiang Gao , Na Li , Xian-He Bu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 675 -681.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 675 -681. DOI: 10.1007/s40242-024-4125-2
Article

A Scalable Pillar Layered Metal-Organic Framework for Natural Gas Purification

Author information +
History +
PDF

Abstract

One-step harvest of high-purity methane (CH4) from ternary propane/ethane/methane (C3H8/C2H6/CH4) mixtures remains a desirable yet challenging goal for natural gas purification. However, adsorbents either suffer from high capacity and selectivity, or are caught in a dilemma of scalable synthesis. Herein, we demonstrate a scalable pillar layered metal-organic framework Ni-MOF for highly efficient one-step CH4 purification. Ni-MOF exhibits high C2H6 and C3H8 uptakes of 83.3 and 86.1 cm3/g at 298 K and 100 kPa and remarkable C2H6/CH4 (50/50, volume ratio, 21.5) and C3H8/CH4 (50/50, volume ratio, 212.0) selectivities. Notably, high C2H6 (42.2 cm3/g at 10 kPa) and C3H8 (64.7 cm3/g at 5 kPa) capacities in the low-pressure region at 298 K were realized on Ni-MOF, suggesting the strong affinities of Ni-MOF towards C2H6 and C3H8. Furthermore, the dynamic breakthrough experiments revealed that purifying CH4 from natural gas in one-step can be achieved in Ni-MOF with high-purity (>99.8%) and productivity (346.0 cm3/g). Most significantly, the production of Ni-MOF can be scalably synthesized at room temperature, rendering it promising potential for industrial application. The combined advantages of exceptional separation performance, scalability, and cycle stability of Ni-MOF pave the way for one-step CH4 purification from natural gas.

Keywords

Metal-organic framework / Adsorption and separation / Natural gas purification / Scale-up synthesis

Cite this article

Download citation ▾
Nan Lu, Lan Lan, Qiang Gao, Na Li, Xian-He Bu. A Scalable Pillar Layered Metal-Organic Framework for Natural Gas Purification. Chemical Research in Chinese Universities, 2024, 40(4): 675-681 DOI:10.1007/s40242-024-4125-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peng J, Zhong J, Liu Z, Xi H, Yan J, Xu F, Chen X, Wang X, Lv D, Li Z. ACS Appl. Mater. Interfaces, 2023, 15: 41466.

[2]

Lan L, Lu N, Yin J-C, Gao Q, Lang F, Zhang Y-H, Nie H-X, Li N, Bu X-H. Chem. Eng. J., 2023, 476: 146750.

[3]

Nath K, Wright K R, Ahmed A, Siegel D J, Matzger A J. J. Am. Chem. Soc., 2024, 146: 10517.

[4]

Wang L, Zhang W, Ding J, Gong L, Krishna R, Ran Y, Chen L, Luo F. Nano Res., 2022, 16: 3287.

[5]

Zhao L, Liu P, Deng C, Wang T, Wang S, Tian Y-J, Zou J-S, Wu X-C, Zhang Y, Peng Y-L, Zhang Z, Zaworotko MJ. Nano Res., 2023, 16: 12338.

[6]

Tu S, Yu L, Lin D, Chen Y, Wu Y, Zhou X, Li Z, Xia Q. ACS Appl. Mater. Interfaces, 2022, 14: 4242.

[7]

Zheng F, Chen R, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. Cell Rep. Phys. Sci., 2022, 3: 100903.

[8]

Fu N, Yu J, Zhao J, Liu R, Li F, Du Y, Yang Z. Carbon, 2019, 149: 538.

[9]

Yang L, Gao Q, Li Y-N, Liu Q-N, Liu X-T, Wang S, Hu J-B, Chen L-Z. Sep. Purif. Technol., 2024, 335: 12635.

[10]

Han G, Wang K, Peng Y, Zhang Y, Huang H, Zhong C. Ind. Eng. Chem. Res., 2017, 56: 14633.

[11]

Zhang Y, Yang L, Wang L, Cui X, Xing H. J. Mater. Chem. A, 2019, 7: 27560.

[12]

Zhang L, Xiong X-H, Meng L-L, Qin L-Z, Chen C-X, Wei Z-W, Su C-Y. J. Mater. Chem. A, 2023, 11: 12902.

[13]

Shi R, Lv D, Chen Y, Wu H, Liu B, Xia Q, Li Z. Sep. Purif. Technol., 2018, 207: 262.

[14]

Yuan Y, Wu H, Xu Y, Lv D, Tu S, Wu Y, Li Z, Xia Q. Chem. Eng. J., 2020, 395: 125057.

[15]

Wang K., Jiang Y., Xu M., Zheng D., Jia S., Cui P., AlChE J., 2024, e18443.

[16]

Sholl DS, Lively RP. Nature, 201, 532: 435.

[17]

Cui J, Zhang Z, Yang L, Hu J, Jin A, Yang Z, Zhao Y, Meng B, Zhou Y, Wang J, Su Y, Wang J, Cui X, Xing H. Science, 2024, 383: 179.

[18]

Li L, Lin R-B, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. Science, 2018, 362: 443.

[19]

Tian Y-J, Deng C, Peng Y-L, Zhang X, Zhang Z, Zaworotko MJ. Coord. Chem. Rev., 2024, 506: 215697.

[20]

Lv D, Zhou P, Xu J, Tu S, Xu F, Yan J, Xi H, Yuan W, Fu Q, Chen X, Xia Q. Chem. Eng. J., 2022, 431: 133208.

[21]

Lin J-B, Nguyen T T T, Vaidhyanathan R, Burner J, Taylor J M, Durekova H, Akhtar F, Mah R K, Ghaffari-Nik O, Marx S, Fylstra N, Iremonger S S, Dawson K W, Sarkar P, Hovington P, Rajendran A, Woo T K, Shimizu G K H. Science, 2021, 374: 1464.

[22]

Lv D, Liu Z, Xu F, Wu H, Yuan W, Yan J, Xi H, Chen X, Xia Q. Sep. Purif. Technol., 2021, 266: 118198.

[23]

Wang L, Huang H, Zhang X, Zhao H, Li F, Gu Y. Coord. Chem. Rev., 2023, 484: 215111.

[24]

Bloch E D, Queen W L, Krishna R, Zadrozny J M, Brown C M, Long J R. Science, 2012, 335: 1606.

[25]

Cadiau A, Adil K, Bhatt P M, Belmabkhout Y, Eddaoudi M. Science, 201, 353: 137.

[26]

Zeng H, Xie M, Wang T, Wei R-J, Xie X-J, Zhao Y, Lu W, Li D. Nature, 2021, 595: 542.

[27]

Zeng H, Xie X-J, Wang T, Xie M, Wang Y, Wei R-J, Lu W, Li D. Nat. Chem. Eng., 2024, 1: 108.

[28]

Su Y, Otake K-I, Zheng J-J, Xu H, Wang Q, Liu H, Huang F, Wang P, Kitagawa S, Gu C. Nat. Commun., 2024, 15: 144.

[29]

Li J-H, Xie Y, Zhou M-Y, Lin R-B, Chen X-M. Chem. Res. Chinese Universities, 2021, 38: 87.

[30]

Guo P, Chang M, Yan T, Li Y, Liu D. Chin. J. Chem. Eng., 2022, 42: 10.

[31]

Hu P, Hu J, Liu H, Wang H, Zhou J, Krishna R, Ji H. ACS Cent. Sci., 2022, 8: 1159.

[32]

Chen F, Guo K, Huang X, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. Sci. China Mater., 2022, 66: 319.

[33]

He Y, Zhang Z, Xiang S, Fronczek FR, Krishna R, Chen B. Chem. Commun., 2012, 48: 6493.

[34]

Zhang Y, Yang L, Wang L, Duttwyler S, Xing H. Angew. Chem. Int. Ed., 2019, 58: 8145.

[35]

Gao S, Morris C G, Lu Z, Yan Y, Godfrey H G W, Murray C, Tang C C, Thomas K M, Yang S, Schröder M. Chem. Mater., 201, 28: 2331.

[36]

Chen Y, Jiang Y, Li J, Hong X, Ni H, Wang L, Ma N, Tong M, Krishna R, Zhang Y. AlChE J., 2023, 70: e18320.

[37]

Xian S, Peng J, Pandey H, Thonhauser T, Wang H, Li J. Engineering, 2023, 23: 56.

[38]

Lin D, Tu S, Yu L, Yuan Y, Wu Y, Zhou X, Li Z, Xia Q. Ind. Eng. Chem. Res., 2023, 62: 5252.

[39]

Jeong S, Kim D, Shin S, Moon D, Cho S J, Lah M S. Chem. Mater., 2014, 26: 1711.

[40]

Gao C, Liu S, Xie L, Ren Y, Cao J, Sun C. CrystEngComm, 2007, 9: 545.

[41]

Xiang H, Shao Y, Ameen A, Chen H, Yang W, Gorgojo P, Siperstein F R, Fan X, Pan Q. Sep. Purif. Technol., 2020, 242: 116819.

[42]

Gu J, Sun X, Kan L, Qiao J, Li G, Liu Y. ACS Appl. Mater. Interfaces, 2021, 13: 41680.

[43]

Liu H, Li B, Zhao Y, Kong C, Zhou C, Lin Y, Tian Z, Chen L. Chem. Commun., 2021, 57: 13008.

[44]

Qiao Y, Chang X, Zheng J, Yi M, Chang Z, Yu M-H, Bu X-H. Inorg. Chem., 2021, 60: 2749.

[45]

Wang D, Zhao T, Cao Y, Yao S, Li G, Huo Q, Liu Y. Chem. Commun., 2014, 50: 8648.

[46]

Li L, Wang X, Liang J, Huang Y, Li H, Lin Z, Cao R. ACS Appl. Mater. Interfaces, 201, 8: 9777.

[47]

Li J, Luo X, Zhao N, Zhang L, Huo Q, Liu Y. Inorg. Chem., 2017, 56: 4141.

[48]

Wang L, Sun W, Duttwyler S, Zhang Y. J. Solid State Chem., 2021, 299: 122167.

[49]

Zhang Q, Lian X, Krishna R, Yang S-Q, Hu T-L. Sep. Purif. Technol., 2023, 304: 122312.

[50]

Luo X, Sun L, Zhao J, Li D-S, Wang D, Li G, Huo Q, Liu Y. Cryst. Growth Des., 2015, 15: 4901.

[51]

Yang S-Q, Krishna R, Chen H, Li L, Zhou L, An Y-F, Zhang F-Y, Zhang Q, Zhang Y-H, Li W, Hu T-L, Bu X-H. J. Am. Chem. Soc., 2023, 145: 13901.

[52]

Krishna R. RSC Adv., 2017, 7: 35724.

[53]

Li L, Lin R-B, Wang X, Zhou W, Jia L, Li J, Chen B. Chem. Eng. J., 2018, 354: 977.

[54]

Geng S, Lin E, Li X, Liu W, Wang T, Wang Z, Sensharma D, Darwish S, Andaloussi Y H, Pham T, Cheng P, Zaworotko M J, Chen Y, Zhang Z. J. Am. Chem. Soc., 2021, 143: 8654.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/