A Scalable Pillar Layered Metal-Organic Framework for Natural Gas Purification

Nan Lu, Lan Lan, Qiang Gao, Na Li, Xian-He Bu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 675-681. DOI: 10.1007/s40242-024-4125-2
Article

A Scalable Pillar Layered Metal-Organic Framework for Natural Gas Purification

Author information +
History +

Abstract

One-step harvest of high-purity methane (CH4) from ternary propane/ethane/methane (C3H8/C2H6/CH4) mixtures remains a desirable yet challenging goal for natural gas purification. However, adsorbents either suffer from high capacity and selectivity, or are caught in a dilemma of scalable synthesis. Herein, we demonstrate a scalable pillar layered metal-organic framework Ni-MOF for highly efficient one-step CH4 purification. Ni-MOF exhibits high C2H6 and C3H8 uptakes of 83.3 and 86.1 cm3/g at 298 K and 100 kPa and remarkable C2H6/CH4 (50/50, volume ratio, 21.5) and C3H8/CH4 (50/50, volume ratio, 212.0) selectivities. Notably, high C2H6 (42.2 cm3/g at 10 kPa) and C3H8 (64.7 cm3/g at 5 kPa) capacities in the low-pressure region at 298 K were realized on Ni-MOF, suggesting the strong affinities of Ni-MOF towards C2H6 and C3H8. Furthermore, the dynamic breakthrough experiments revealed that purifying CH4 from natural gas in one-step can be achieved in Ni-MOF with high-purity (>99.8%) and productivity (346.0 cm3/g). Most significantly, the production of Ni-MOF can be scalably synthesized at room temperature, rendering it promising potential for industrial application. The combined advantages of exceptional separation performance, scalability, and cycle stability of Ni-MOF pave the way for one-step CH4 purification from natural gas.

Keywords

Metal-organic framework / Adsorption and separation / Natural gas purification / Scale-up synthesis

Cite this article

Download citation ▾
Nan Lu, Lan Lan, Qiang Gao, Na Li, Xian-He Bu. A Scalable Pillar Layered Metal-Organic Framework for Natural Gas Purification. Chemical Research in Chinese Universities, 2024, 40(4): 675‒681 https://doi.org/10.1007/s40242-024-4125-2

References

[1]
Peng J, Zhong J, Liu Z, Xi H, Yan J, Xu F, Chen X, Wang X, Lv D, Li Z. . ACS Appl. Mater. Interfaces, 2023, 15: 41466,
CrossRef Google scholar
[2]
Lan L, Lu N, Yin J-C, Gao Q, Lang F, Zhang Y-H, Nie H-X, Li N, Bu X-H. . Chem. Eng. J., 2023, 476: 146750,
CrossRef Google scholar
[3]
Nath K, Wright K R, Ahmed A, Siegel D J, Matzger A J. . J. Am. Chem. Soc., 2024, 146: 10517,
CrossRef Google scholar
[4]
Wang L, Zhang W, Ding J, Gong L, Krishna R, Ran Y, Chen L, Luo F. . Nano Res., 2022, 16: 3287,
CrossRef Google scholar
[5]
Zhao L, Liu P, Deng C, Wang T, Wang S, Tian Y-J, Zou J-S, Wu X-C, Zhang Y, Peng Y-L, Zhang Z, Zaworotko MJ. . Nano Res., 2023, 16: 12338,
CrossRef Google scholar
[6]
Tu S, Yu L, Lin D, Chen Y, Wu Y, Zhou X, Li Z, Xia Q. . ACS Appl. Mater. Interfaces, 2022, 14: 4242,
CrossRef Google scholar
[7]
Zheng F, Chen R, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. . Cell Rep. Phys. Sci., 2022, 3: 100903,
CrossRef Google scholar
[8]
Fu N, Yu J, Zhao J, Liu R, Li F, Du Y, Yang Z. . Carbon, 2019, 149: 538,
CrossRef Google scholar
[9]
Yang L, Gao Q, Li Y-N, Liu Q-N, Liu X-T, Wang S, Hu J-B, Chen L-Z. . Sep. Purif. Technol., 2024, 335: 12635
[10]
Han G, Wang K, Peng Y, Zhang Y, Huang H, Zhong C. . Ind. Eng. Chem. Res., 2017, 56: 14633,
CrossRef Google scholar
[11]
Zhang Y, Yang L, Wang L, Cui X, Xing H. . J. Mater. Chem. A, 2019, 7: 27560,
CrossRef Google scholar
[12]
Zhang L, Xiong X-H, Meng L-L, Qin L-Z, Chen C-X, Wei Z-W, Su C-Y. . J. Mater. Chem. A, 2023, 11: 12902,
CrossRef Google scholar
[13]
Shi R, Lv D, Chen Y, Wu H, Liu B, Xia Q, Li Z. . Sep. Purif. Technol., 2018, 207: 262,
CrossRef Google scholar
[14]
Yuan Y, Wu H, Xu Y, Lv D, Tu S, Wu Y, Li Z, Xia Q. . Chem. Eng. J., 2020, 395: 125057,
CrossRef Google scholar
[15]
Wang K., Jiang Y., Xu M., Zheng D., Jia S., Cui P., AlChE J., 2024, e18443.
[16]
Sholl DS, Lively RP. . Nature, 2016, 532: 435,
CrossRef Google scholar
[17]
Cui J, Zhang Z, Yang L, Hu J, Jin A, Yang Z, Zhao Y, Meng B, Zhou Y, Wang J, Su Y, Wang J, Cui X, Xing H. . Science, 2024, 383: 179,
CrossRef Google scholar
[18]
Li L, Lin R-B, Krishna R, Li H, Xiang S, Wu H, Li J, Zhou W, Chen B. . Science, 2018, 362: 443,
CrossRef Google scholar
[19]
Tian Y-J, Deng C, Peng Y-L, Zhang X, Zhang Z, Zaworotko MJ. . Coord. Chem. Rev., 2024, 506: 215697,
CrossRef Google scholar
[20]
Lv D, Zhou P, Xu J, Tu S, Xu F, Yan J, Xi H, Yuan W, Fu Q, Chen X, Xia Q. . Chem. Eng. J., 2022, 431: 133208,
CrossRef Google scholar
[21]
Lin J-B, Nguyen T T T, Vaidhyanathan R, Burner J, Taylor J M, Durekova H, Akhtar F, Mah R K, Ghaffari-Nik O, Marx S, Fylstra N, Iremonger S S, Dawson K W, Sarkar P, Hovington P, Rajendran A, Woo T K, Shimizu G K H. . Science, 2021, 374: 1464,
CrossRef Google scholar
[22]
Lv D, Liu Z, Xu F, Wu H, Yuan W, Yan J, Xi H, Chen X, Xia Q. . Sep. Purif. Technol., 2021, 266: 118198,
CrossRef Google scholar
[23]
Wang L, Huang H, Zhang X, Zhao H, Li F, Gu Y. . Coord. Chem. Rev., 2023, 484: 215111,
CrossRef Google scholar
[24]
Bloch E D, Queen W L, Krishna R, Zadrozny J M, Brown C M, Long J R. . Science, 2012, 335: 1606,
CrossRef Google scholar
[25]
Cadiau A, Adil K, Bhatt P M, Belmabkhout Y, Eddaoudi M. . Science, 2016, 353: 137,
CrossRef Google scholar
[26]
Zeng H, Xie M, Wang T, Wei R-J, Xie X-J, Zhao Y, Lu W, Li D. . Nature, 2021, 595: 542,
CrossRef Google scholar
[27]
Zeng H, Xie X-J, Wang T, Xie M, Wang Y, Wei R-J, Lu W, Li D. . Nat. Chem. Eng., 2024, 1: 108,
CrossRef Google scholar
[28]
Su Y, Otake K-I, Zheng J-J, Xu H, Wang Q, Liu H, Huang F, Wang P, Kitagawa S, Gu C. . Nat. Commun., 2024, 15: 144,
CrossRef Google scholar
[29]
Li J-H, Xie Y, Zhou M-Y, Lin R-B, Chen X-M. . Chem. Res. Chinese Universities, 2021, 38: 87,
CrossRef Google scholar
[30]
Guo P, Chang M, Yan T, Li Y, Liu D. . Chin. J. Chem. Eng., 2022, 42: 10,
CrossRef Google scholar
[31]
Hu P, Hu J, Liu H, Wang H, Zhou J, Krishna R, Ji H. . ACS Cent. Sci., 2022, 8: 1159,
CrossRef Google scholar
[32]
Chen F, Guo K, Huang X, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. . Sci. China Mater., 2022, 66: 319,
CrossRef Google scholar
[33]
He Y, Zhang Z, Xiang S, Fronczek FR, Krishna R, Chen B. . Chem. Commun., 2012, 48: 6493,
CrossRef Google scholar
[34]
Zhang Y, Yang L, Wang L, Duttwyler S, Xing H. . Angew. Chem. Int. Ed., 2019, 58: 8145,
CrossRef Google scholar
[35]
Gao S, Morris C G, Lu Z, Yan Y, Godfrey H G W, Murray C, Tang C C, Thomas K M, Yang S, Schröder M. . Chem. Mater., 2016, 28: 2331,
CrossRef Google scholar
[36]
Chen Y, Jiang Y, Li J, Hong X, Ni H, Wang L, Ma N, Tong M, Krishna R, Zhang Y. . AlChE J., 2023, 70: e18320,
CrossRef Google scholar
[37]
Xian S, Peng J, Pandey H, Thonhauser T, Wang H, Li J. . Engineering, 2023, 23: 56,
CrossRef Google scholar
[38]
Lin D, Tu S, Yu L, Yuan Y, Wu Y, Zhou X, Li Z, Xia Q. . Ind. Eng. Chem. Res., 2023, 62: 5252,
CrossRef Google scholar
[39]
Jeong S, Kim D, Shin S, Moon D, Cho S J, Lah M S. . Chem. Mater., 2014, 26: 1711,
CrossRef Google scholar
[40]
Gao C, Liu S, Xie L, Ren Y, Cao J, Sun C. . CrystEngComm, 2007, 9: 545,
CrossRef Google scholar
[41]
Xiang H, Shao Y, Ameen A, Chen H, Yang W, Gorgojo P, Siperstein F R, Fan X, Pan Q. . Sep. Purif. Technol., 2020, 242: 116819,
CrossRef Google scholar
[42]
Gu J, Sun X, Kan L, Qiao J, Li G, Liu Y. . ACS Appl. Mater. Interfaces, 2021, 13: 41680,
CrossRef Google scholar
[43]
Liu H, Li B, Zhao Y, Kong C, Zhou C, Lin Y, Tian Z, Chen L. . Chem. Commun., 2021, 57: 13008,
CrossRef Google scholar
[44]
Qiao Y, Chang X, Zheng J, Yi M, Chang Z, Yu M-H, Bu X-H. . Inorg. Chem., 2021, 60: 2749,
CrossRef Google scholar
[45]
Wang D, Zhao T, Cao Y, Yao S, Li G, Huo Q, Liu Y. . Chem. Commun., 2014, 50: 8648,
CrossRef Google scholar
[46]
Li L, Wang X, Liang J, Huang Y, Li H, Lin Z, Cao R. . ACS Appl. Mater. Interfaces, 2016, 8: 9777,
CrossRef Google scholar
[47]
Li J, Luo X, Zhao N, Zhang L, Huo Q, Liu Y. . Inorg. Chem., 2017, 56: 4141,
CrossRef Google scholar
[48]
Wang L, Sun W, Duttwyler S, Zhang Y. . J. Solid State Chem., 2021, 299: 122167,
CrossRef Google scholar
[49]
Zhang Q, Lian X, Krishna R, Yang S-Q, Hu T-L. . Sep. Purif. Technol., 2023, 304: 122312,
CrossRef Google scholar
[50]
Luo X, Sun L, Zhao J, Li D-S, Wang D, Li G, Huo Q, Liu Y. . Cryst. Growth Des., 2015, 15: 4901,
CrossRef Google scholar
[51]
Yang S-Q, Krishna R, Chen H, Li L, Zhou L, An Y-F, Zhang F-Y, Zhang Q, Zhang Y-H, Li W, Hu T-L, Bu X-H. . J. Am. Chem. Soc., 2023, 145: 13901,
CrossRef Google scholar
[52]
Krishna R. . RSC Adv., 2017, 7: 35724,
CrossRef Google scholar
[53]
Li L, Lin R-B, Wang X, Zhou W, Jia L, Li J, Chen B. . Chem. Eng. J., 2018, 354: 977,
CrossRef Google scholar
[54]
Geng S, Lin E, Li X, Liu W, Wang T, Wang Z, Sensharma D, Darwish S, Andaloussi Y H, Pham T, Cheng P, Zaworotko M J, Chen Y, Zhang Z. . J. Am. Chem. Soc., 2021, 143: 8654,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/