Delayed Fluorescence and Amplified Chirality via Modified Substitution Position for Deep-red Circularly Polarized Organic Light Emitting-diodes

Lixun Zhu, Dan Liu, Kaiwen Wu, Guohua Xie, Zheng Zhao, Ben Zhong Tang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 657-663. DOI: 10.1007/s40242-024-4123-4
Article

Delayed Fluorescence and Amplified Chirality via Modified Substitution Position for Deep-red Circularly Polarized Organic Light Emitting-diodes

Author information +
History +

Abstract

Developing easily accessible deep-red/near-infrared circularly polarized emitters for practical organic light-emitting diodes remains a significant challenge. Here, a practical strategy has been proposed for developing deep-red circularly polarized delayed fluorescent emitters based on a novel chiral acceptor platform. By changing triphenylamine (TPA) substitution position from para to meta, R/S-M-TBBTCN demonstrated thermally activated delayed fluorescence (TADF) properties with a delayed lifetime of 6.6 µs that R/S-P-TBBTCN doesn’t have. Furthermore, R/S-M-TBBTCN showed a 65 nm red-shift in emission and a 10-fold enhancement in asymmetry factor (g lum), compared with R/S-P-TBBTCN. The solution-processed nondoped circularly polarized organic light-emitting diodes (CP-OLEDs) based on R-M-TBBTCN display deep-red emission and 2.2% external quantum efficiency.

Keywords

Amplified chirality / Deep-red circularly polarized organic light emitting-diode / Binaphthol based chiral acceptor

Cite this article

Download citation ▾
Lixun Zhu, Dan Liu, Kaiwen Wu, Guohua Xie, Zheng Zhao, Ben Zhong Tang. Delayed Fluorescence and Amplified Chirality via Modified Substitution Position for Deep-red Circularly Polarized Organic Light Emitting-diodes. Chemical Research in Chinese Universities, 2024, 40(4): 657‒663 https://doi.org/10.1007/s40242-024-4123-4

References

[[1]]
Zhang M, Guo Q, Li Z, Zhou Y, Zhao S, Tong Z, Wang Y, Li G, Jin S, Zhu M, Zhuang T, Yu S-H. . Science Advances, 2023, 9: eadi9944, pmcid: 10599622
CrossRef Pubmed Google scholar
[[2]]
Gao X, Xu Y, Huang J, Hu Z, Zhu W, Yi X, Wang L. . Opt. Lett., 2021, 46: 2666,
CrossRef Pubmed Google scholar
[[3]]
Mou Y, Shen X, Yuan K, Wang X, Fan F, Wu Y, Wang C, Jin X. . Clin. Transl. Sci., 2022, 15: 994,
CrossRef Pubmed Google scholar
[[4]]
Ni B, Li Y, Liu W, Li B, Li H, Yang Y. . Chemical Communications, 2021, 57: 2796,
CrossRef Pubmed Google scholar
[[5]]
Liu J, Song Z-P, Sun L-Y, Li B-X, Lu Y-Q, Li Q. . Responsive Materials, 2023, 1: e20230005,
CrossRef Google scholar
[[6]]
Han H., Lee Y. J., Kyhm J., Jeong J. S., Han J. H., Yang M. K., Lee K. M., Choi Y., Yoon T. H., Ju H., Ahn S. K., Lim J. A., Advanced Functional Materials, 2020, 30.
[[7]]
Hao J, Lu H, Ma L, Chen X, Beard M C, Blackburn J L. . ACS Nano, 2021, 15: 7608, pmcid: 10156083
CrossRef Pubmed Google scholar
[[8]]
Gong Z-L, Li Z-Q, Zhong Y-W. . Aggregate, 2022, 3: e177,
CrossRef Google scholar
[[9]]
Zhang C., Li S., Dong X. Y., Zang S. Q., Aggregate, 2021, 2.
[[10]]
Hao C, Wang G, Chen C, Xu J, Xu C, Kuang H, Xu L. . Nano-Micro Letters, 2023, 15: 39, pmcid: 9849638
CrossRef Pubmed Google scholar
[[11]]
Zhang D-W, Li M, Chen C-F. . Chemical Society Reviews, 2020, 49: 1331,
CrossRef Pubmed Google scholar
[[12]]
Zhong H, Zhao B, Deng J. . Advanced Optical Materials, 2023, 11: 2202787,
CrossRef Google scholar
[[13]]
Shen C, Gan F, Zhang G, Ding Y, Wang J, Wang R, Crassous J, Qiu H. . Materials Chemistry Frontiers, 2020, 4: 837,
CrossRef Google scholar
[[14]]
Yan X, Zhao H, Zhang K, Zhang Z, Chen Y, Feng L. . ChemPlusChem, 2023, 88: e202200428,
CrossRef Pubmed Google scholar
[[15]]
Jiang S, Kotov N A. . Advanced Materials, 2023, 35: 2108431,
CrossRef Google scholar
[[16]]
He Y, Lin S, Guo J, Li Q. . Aggregate, 2021, 2: e141,
CrossRef Google scholar
[[17]]
Willis O G, Zinna F, Di Bari L. . Angewandte Chemie International Edition, 2023, 62: e202302358,
CrossRef Pubmed Google scholar
[[18]]
Zhang Y, Li D, Li Q, Quan Y, Cheng Y. . Advanced Functional Materials, 2023, 33: 2309133,
CrossRef Google scholar
[[19]]
Liang N., Liu J., Lin Y., Xie Z., Cui B.-B., Gong Z.-L., Gan Q., Zhong Y.-W., Feng Y., Yao C.-J., Advanced Optical Materials, n/a, 2303155.
[[20]]
Wang X, Ma S, Zhao B, Deng J. . Advanced Functional Materials, 2023, 33: 2214364,
CrossRef Google scholar
[[21]]
Okada H, Hara N, Kaji D, Shizuma M, Fujuiki M, Imai Y. . Physical Chemistry Chemical Physics, 2020, 22: 13862,
CrossRef Pubmed Google scholar
[[22]]
Feng H, Pu J, Wang S, Jiang S, Yang W, Cao D, Feng Y-S. . Dyes and Pigments, 2023, 217: 111422,
CrossRef Google scholar
[[23]]
Kong F-C, Yang S-Y, Liao X-J, Feng Z-Q, Shen W-S, Jiang Z-Q, Zhou D-Y, Zheng Y-X, Liao L-S. . Advanced Functional Materials, 2022, 32: 2201512,
CrossRef Google scholar
[[24]]
Feng X, Wang X, Redshaw C, Tang B Z. . Chemical Society Reviews, 2023, 52: 6715,
CrossRef Pubmed Google scholar
[[25]]
Luo J., Xie Z., Lam J. W. Y., Cheng L., Chen H., Qiu C., Kwok H. S., Zhan X., Liu Y., Zhu D., Tang B. Z., Chemical Communications, 2001, 1740.
[[26]]
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce M R, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu J-J, Hu R, Huang X, James T D, Jiang X, Konishi G-I, Kwok R T K, Lam J W Y, Li C, Li H, Li K, Li N, Li W-J, Li Y, Liang X-J, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou X-Y, Luo L, McGonigal P R, Mao Z-W, Niu G, Owyong T C, Pucci A, Qian J, Qin A, Qiu Z, Rogach A L, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang W-X, Wang W-J, Wang X, Wang Y-F, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang H-B, Yang L-L, Yang M, Yang Y-W, Yoon J, Zang S-Q, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu M-Q, Zhu W-H, Zou H, Tang B Z. . ACS Nano, 2023, 17: 14347, pmcid: 10416578
CrossRef Pubmed Google scholar
[[27]]
Hwang J, Nagaraju P, Cho M J, Choi D H. . Aggregate, 2023, 4: e199,
CrossRef Google scholar
[[28]]
Yin P-A, Ou Q, Peng Q, Shuai Z. . Aggregate, 2023, 4: e291,
CrossRef Google scholar
[[29]]
Leung N L C, Xie N, Yuan W, Liu Y, Wu Q, Peng Q, Miao Q, Lam J W Y, Tang B Z. . Chemistry–A European Journal, 2014, 20: 15349,
CrossRef Pubmed Google scholar
[[30]]
Liu Y, Deng Z, Li J, Xie J, Feng X, Qiu Z, Xie G, Zhao Z, Tang B Z. . Materials Chemistry Frontiers, 2023, 7: 5431,
CrossRef Google scholar
[[31]]
Zhao Y, He M, Xu L, Zhang C, Guo L, Feng W, Yan H. . Biomacromolecules, 2023, 24: 1888,
CrossRef Pubmed Google scholar
[[32]]
Zhang Z, Deng Z, Zhu L, Zeng J, Cai X M, Qiu Z, Zhao Z, Tang B Z. . Regenerative Biomaterials, 2023, 10: rbad044, pmcid: 10229374
CrossRef Pubmed Google scholar
[[33]]
Tu Y, Yu Y, Xiao D, Liu J, Zhao Z, Liu Z, Lam J W Y, Tang B Z. . Adv. Sci. (Weinh), 2020, 7: 2001845,
CrossRef Pubmed Google scholar
[[34]]
Zheng X, Huang R, Zhong C, Xie G, Ning W, Huang M, Ni F, Dias F B, Yang C. . Advanced Science, 2020, 7: 1902087, pmcid: 7141015
CrossRef Pubmed Google scholar
[[35]]
Cui L S, Nomura H, Geng Y, Kim J U, Nakanotani H, Adachi C. . Angew. Chem. Int. Ed. Engl., 2017, 56: 1571,
CrossRef Pubmed Google scholar
[[36]]
Liu S, Liu S, Gao Y, Lan H, Lin L, Wang C-K, Fan J, Song Y. . Materials Today Chemistry, 2023, 33: 101700,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/