Recent Advances in the Synthesis of Zeolites from Solid Wastes

Pei Liu, Qinming Wu, Zhenghai Chen, Feng-Shou Xiao

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 646-656. DOI: 10.1007/s40242-024-4122-5
Review

Recent Advances in the Synthesis of Zeolites from Solid Wastes

Author information +
History +

Abstract

With the rapid development of industrialization, it is inevitable to produce solid wastes in the fields of energy petrochemical industry. However, the storage and utilization of these solid wastes have become a considerable challenge. Due to the main element composition of these solid wastes including silicon and aluminum, it has attracted extensive attention for synthesizing zeolites. This review summarized the properties of major solid wastes including coal fly ash, coal gangue, spent fluid catalytic cracking (FCC) catalyst, lithium slag, bauxite residue, and waste glass. Then, the preparation of LTA, FAU, ZSM-5, SSZ-13, Beta, and MOR zeolites from these solid wastes were introduced. Finally, the current challenges and perspectives were discussed.

Keywords

Solid waste / Zeolite / Utilization / Sustainable route / Application

Cite this article

Download citation ▾
Pei Liu, Qinming Wu, Zhenghai Chen, Feng-Shou Xiao. Recent Advances in the Synthesis of Zeolites from Solid Wastes. Chemical Research in Chinese Universities, 2024, 40(4): 646‒656 https://doi.org/10.1007/s40242-024-4122-5

References

[1]
Wang Z P, Yu J H, Xu R R. . Chem. Soc. Rev., 2012, 41: 1729,
CrossRef Google scholar
[2]
Garces L J, Makwana V D, Hincapie B, Sacco A, Suib S L. . J. Catal., 2003, 217: 107
[3]
Higuchi Y, Tanaka S. . Microporous Mesoporous Mater., 2023, 354: 112550,
CrossRef Google scholar
[4]
Shi D D, Haw K-G, Kouvatas C, Tang L X, Zhang Y Y, Fang Q R, Qiu S L, Valtchev V. . Angew. Chem. Int. Ed., 2020, 59: 19576,
CrossRef Google scholar
[5]
Tang L X, Haw K-G, Zhang Y Y, Fang Q R, Qiu S L, Valtchev V. . Microporous Mesoporous Mater., 2019, 280: 306,
CrossRef Google scholar
[6]
Wu Q M, Zhu L F, Chu Y Y, Liu X L, Zhang C S, Zhang J, Xu H, Xu J, Deng F, Feng Z C, Meng X J, Xiao F-S. . Angew. Chem. Int. Ed., 2019, 58: 12138,
CrossRef Google scholar
[7]
Cao C Y, Xuan W W, Yan S Y, Wang Q. . J. Environ. Chem. Eng., 2023, 11: 110898,
CrossRef Google scholar
[8]
Chang H L, Shih W H. . Ind. Eng. Chem. Res., 2000, 39: 4185,
CrossRef Google scholar
[9]
Coronas J. . Chem. Eng. J., 2010, 156: 236,
CrossRef Google scholar
[10]
Xu H, Wu P. . Natl. Sci. Rev., 2022, 9: nwac045,
CrossRef Google scholar
[11]
Belviso C. . Prog. Energy Combust. Sci., 2018, 65: 109,
CrossRef Google scholar
[12]
Collins F, Rozhkovskaya A, Outram J G, Millar G J. . Microporous Mesoporous Mater., 2020, 291: 109667,
CrossRef Google scholar
[13]
Fan X H, Yuan R R, Gan M J, Ji Z Y, Sun Z Q. . Sci. Total Environ., 2023, 865: 160745,
CrossRef Google scholar
[14]
Lee Y-R, Soe J T, Zhang S Q, Ahn J-W, Park M B, Ahn W-S. . Chem. Eng. J., 2017, 317: 821,
CrossRef Google scholar
[15]
Chen X Y, Zhang P, Wang Y, Peng W, Ren Z F, Li Y H, Chu B S, Zhu Q. . Front. Environ. Sci. Eng., 2023, 17: 149,
CrossRef Google scholar
[16]
Kaithwas A, Prasad M, Kulshreshtha A, Verma S. . Chem. Eng. Res. Des., 2012, 90: 1632,
CrossRef Google scholar
[17]
Elidrissi Z C, Idrissi D E M, Kouzi Y, Achiou B, Tahiri S, Ouammou M, Younssi S A. . Inorg. Chem. Commun., 2023, 156: 111192,
CrossRef Google scholar
[18]
Fan Y, Zhang F-S, Zhu J X, Liu Z G. . J. Hazard. Mater., 2008, 153: 382,
CrossRef Google scholar
[19]
Mamaghani F A A, Salem A, Salem S. . Process Saf. Environ. Prot., 2022, 159: 500,
CrossRef Google scholar
[20]
Silva B, Martins M, Rosca M, Rocha V, Lago A, Neves I C, Tavares T. . Sep. Purif. Technol., 2020, 235: 116139,
CrossRef Google scholar
[21]
Mlonka-Medrala A. . Energies., 2023, 16: 6593,
CrossRef Google scholar
[22]
Montalvo S, Huilinir C, Borja R, Sanchez E, Herrmann C. . Bioresource Technol., 2020, 301: 122808,
CrossRef Google scholar
[23]
Zhang X Y, Li C Q, Zheng S L, Di Y H, Sun Z M. . Int. J. Min. Met. Mater., 2022, 29: 1,
CrossRef Google scholar
[24]
Bukhari S S, Behin J, Kazemian H, Rohani S. . Fuel, 2015, 140: 250,
CrossRef Google scholar
[25]
Wang R Y, Song Y, Yang X, Zhou J H, Jiang Q Q, Wang Z B, Wang L, Peng B, Song H T, Lin W. . ACS Sustainable Chem. Eng., 2022, 10: 11376,
CrossRef Google scholar
[26]
Li H, Zheng F, Wang J, Zhou J M, Huang X H, Chen L, Hu P F, Gao J-M, Zhen Q, Bashir S, Liu J B L. . Chem. Eng. J., 2020, 390: 124513,
CrossRef Google scholar
[27]
Xue Y J, Wei X T, Zhao H, Wang T, Xiao Y. . J. Cleaner Prod., 2020, 259: 120830,
CrossRef Google scholar
[28]
Basaldella E I, Paladino J C, Solari M, Valle G M. . Appl. Catal. B: Environ., 2006, 66: 186,
CrossRef Google scholar
[29]
Huang S Z, Wang Y, Zhang L, Zhu S J, Ma Z F, Cui Q, Wang H Y. . New J. Chem., 2023, 47: 14335,
CrossRef Google scholar
[30]
Wang B Y, Li J, Zhou X, Hao W F, Zhang S Q, Lan C, Wang X M, Wang Z Y, Xu J, Zhang J-N, Yan W F. . Inorg. Chem. Front., 2022, 9: 468,
CrossRef Google scholar
[31]
Qiang Z Q, Li R, Yang Z Q, Guo M, Cheng F Q, Zhang M. . Energy Fuels, 2019, 33: 6641,
CrossRef Google scholar
[32]
Hernandez-Tamargo C, Kwakye-Awuah B, O’Malley A J, de Leeuw N H. . Microporous Mesoporous Mater., 2021, 315: 110903,
CrossRef Google scholar
[33]
Kang Y B, Swain B, Im B, Yoon J-H, Park K H, Lee C G, Kim D G. . Metals, 2019, 9: 1240,
CrossRef Google scholar
[34]
Ojumu T V, Du Plessis P W, Petrik L F. . Ultrason. Sonochem., 2016, 31: 342,
CrossRef Google scholar
[35]
Liu P, Wu Q M, Yan K P, Wang L, Xiao F-S. . Dalton Trans., 2022, 52: 24,
CrossRef Google scholar
[36]
Rodríguez E D, Bernal S A, Provis J L, Gehman J D, Monzó J M, Payá J, Borrachero M V. . Fuel, 2013, 109: 493,
CrossRef Google scholar
[37]
Rozhkovskaya A, Rajapakse J, Millar G J. . Adv. Powder Technol., 2021, 32: 3248,
CrossRef Google scholar
[38]
Qiang Z Q, Shen X J, Guo M, Cheng F Q, Zhang M A. . Microporous Mesoporous Mater., 2019, 287: 77,
CrossRef Google scholar
[39]
Liu L Y, Du T, Li G, Yang F, Che S. . J. Hazard. Mater., 2014, 278: 551,
CrossRef Google scholar
[40]
Kim J-C, Choi M, Song H J, Park J E, Yoon J-H, Park K-S, Lee C G, Kim D-W. . Mater. Chem. Phys., 2015, 166: 20,
CrossRef Google scholar
[41]
Sayehi M, Delahay G, Tounsi H. . J. Environ. Chem. Eng., 2022, 10: 108561,
CrossRef Google scholar
[42]
Breck D W, Eversole W G, Milton R M. . J. Am. Chem. Soc., 1956, 78: 2338,
CrossRef Google scholar
[43]
Escamilla-Perez A M, Barre Y, Grandjean A, Hertz A. . J. Supercrit. Fluid., 2023, 199: 105940,
CrossRef Google scholar
[44]
Mouna S, Hajji S, Tounsi H. . J. Cleaner Prod., 2024, 434: 139946,
CrossRef Google scholar
[45]
Lee K M, Jo Y M. . J. Mater. Cycles. Waste. Manage., 2010, 12: 212,
CrossRef Google scholar
[46]
Qian T T, Li J H. . Adv. Powder Technol., 2015, 26: 98,
CrossRef Google scholar
[47]
Jin Y X, Li L, Liu Z, Zhu S Y, Wang D M. . Adv. Powder Technol., 2021, 32: 791,
CrossRef Google scholar
[48]
Escardino A, Barba A, Sanchez E, Cantavella V. . Br. Ceram. Trans., 1999, 98: 172,
CrossRef Google scholar
[49]
Basaldella E I, Torres Sanchez R M, Conconi M S. . Appl. Clay Sci., 2009, 42: 611,
CrossRef Google scholar
[50]
Ferella F, Leone S, Innocenzi V, De Michelis I, Taglieri G, Gallucci K. . J. Cleaner Prod., 2019, 230: 910,
CrossRef Google scholar
[51]
Li L, Xu S C, Liu Z, Wang D M. . Materials, 2024, 17: 568,
CrossRef Google scholar
[52]
Ma D Y, Wang Z D, Guo M, Zhang M, Liu J B. . Waste Manage., 2014, 34: 2365,
CrossRef Google scholar
[53]
Lei P-C, Shen X-J, Li Y, Guo M, Zhang M. . Int. J. Min. Met. Mater., 2016, 23: 850,
CrossRef Google scholar
[54]
Tsujiguchi M, Kobashi T, Utsumi Y, Kakimori N, Nakahira A. . J. Am. Ceram. Soc., 2014, 97: 114,
CrossRef Google scholar
[55]
Tae L C. . Appl. Chem. Eng., 2017, 28: 521
[56]
Li W J, Chai Y C, Wu G J, Li L D. . J. Phys. Chem. Lett., 2022, 13: 11419,
CrossRef Google scholar
[57]
Nazir L S M, Yeong Y F, Chew T L. . J. Asian Ceram. Soc., 2020, 8: 553,
CrossRef Google scholar
[58]
Yu Q, Zhang W N, Li J J, Liu W, Wang Y N, Chu W F, Zhang X B, Xu L Y, Zhu X X, Li X J. . Microporous Mesoporous Mater., 2023, 355: 112570,
CrossRef Google scholar
[59]
Holler H, Wirsching U. . Fortschr. Mineral., 1985, 63: 21
[60]
Molina A, Poole C A. . Miner. Eng., 2004, 17: 167,
CrossRef Google scholar
[61]
Belviso C, Cavalcante F, Javier Huertas F, Lettino A, Ragone P, Fiore S. . Microporous Mesoporous Mater., 2012, 162: 115,
CrossRef Google scholar
[62]
Murukutti M K, Jena H. . J. Hazard. Mater., 2022, 423: 127085,
CrossRef Google scholar
[63]
Ren L M, Wu Q M, Yang C G, Zhu L F, Li C J, Zhang P L, Zhang H Y, Meng X J, Xiao F-S. . J. Am. Chem. Soc., 2012, 134: 15173,
CrossRef Google scholar
[64]
Wu Q M, Meng X J, Gao X H, Xiao F-S. . Acc. Chem. Res., 2018, 51: 1396,
CrossRef Google scholar
[65]
Sivalingam S, Sen S. . Environ. Sei. Pollut. Res., 2019, 26: 34693,
CrossRef Google scholar
[66]
Belviso C. . Ultrason. Sonochem., 2018, 43: 9,
CrossRef Google scholar
[67]
Liu X M, Li L, Yang T T, Yan Z F. . J. Porous Mater., 2012, 19: 133,
CrossRef Google scholar
[68]
Yang N N, Gou L Z, Bai Z T, Cheng F Q, Guo M, Zhang M. . J. Inorg. Organomet. Poly. Mater., 2022, 32: 3496,
CrossRef Google scholar
[69]
Chen G R, Li J Y, Wang S, Han J, Wang X X, She P H, Fan W B, Guan B Y, Tian P, Yu J H. . Angew. Chem. Int. Ed., 2022, 61: e202200677,
CrossRef Google scholar
[70]
Bensafi B, Chouat N, Djafri F. . Coord. Chem. Rev., 2023, 496: 215397,
CrossRef Google scholar
[71]
Rahimi N, Karimzadeh R. . Appl. Catal. A: Gen., 2011, 398: 1,
CrossRef Google scholar
[72]
Rajakrishnamoorthy P, Saravanan C G, Natarajan R, Karthikeyan D, Sasikala J, Femilda Josephin J S, Vikneswaran M, Sonthalia A, Varuvel E G. . Fuel, 2023, 340: 127380,
CrossRef Google scholar
[73]
Zhao Y F, Gu S Y, Li L, Wang M. . Environ. Pollut., 2024, 345: 1
[74]
Li H P, Cheng R Q, Liu Z L, Du C F. . Sci. Total Environ., 2019, 683: 638,
CrossRef Google scholar
[75]
Tehubijuluw H, Subagyo R, Yulita M F, Nugraha R E, Kusumawati Y, Bahruji H, Jalil A A, Hartati H, Prasetyoko D. . Environ. Sci. Pollut. Res., 2021, 28: 37354,
CrossRef Google scholar
[76]
Timoshev V., Haufe L. A., Busse O., Hamedi H., Seifert M., Weigand J. J., ChemSusChem, 2024, e202301642.
[77]
Wu Q M, Luan H M, Xiao F-S. . Sci. China Chem., 2022, 65: 1683,
CrossRef Google scholar
[78]
Liu L J, Ji W X, Li K N, Yu W H, Lan L P, Ye J J, Gao X, Li Y Y, Ma Y L, Sun Y G. . Silicon, 2022, 14: 8855,
CrossRef Google scholar
[79]
Gao J D, Lin Q J, Yang T Z, Bao Y C, Liu J. . Chemosphere, 2023, 341: 139741,
CrossRef Google scholar
[80]
Wu Y F, Liang G B, Zhao X N, Wang H, Qu Z P. . J. Environ. Chem. Eng., 2023, 11: 109589,
CrossRef Google scholar
[81]
Beale A M, Gao F, Lezcano-Gonzalez I, Peden C H F, Szanyi J. . Chem. Soc. Rev., 2015, 44: 7371,
CrossRef Google scholar
[82]
Fickel D W, D’Addio E, Lauterbach J A, Lobo R F. . Appl. Catal. B-Environ., 2011, 102: 441,
CrossRef Google scholar
[83]
Deimund M A, Harrison L, Lunn J D, Liu Y, Malek A, Shayib R, Davis M E. . ACS Catal., 2016, 6: 542,
CrossRef Google scholar
[84]
Hudson M R, Queen W L, Mason J A, Fickel D W, Lobo R F, Brown C M. . J. Am. Chem. Soc., 2012, 134: 1970,
CrossRef Google scholar
[85]
Han J F, Ha Y, Guo M Y, Zhao P P, Liu Q L, Liu C X, Song C F, Ji N, Lu X B, Ma D G, Li Z G. . Ultrason. Sonochem., 2019, 59: 104703,
CrossRef Google scholar
[86]
Han J F, Jin X T, Song C F, Bi Y L, Liu Q L, Liu C X, Ji N, Lu X B, Ma D G, Li Z G. . Green Chem., 2020, 22: 219,
CrossRef Google scholar
[87]
Gollakota A R K, Munagapati V S, Volli V, Gautam S, Wen J-C, Shu C-M. . J. Hazard. Mater., 2021, 416: 125925,
CrossRef Google scholar
[88]
Liao X, Wang B, Yin R, Ren W G, Li J, Gan H T, Lv P B, Bao W R, Wang J C, Chang L P, Huang Z G, Han L N. . J. Solid. State Chem., 2023, 323: 124024,
CrossRef Google scholar
[89]
Lv W T, Sun F M, Zhang R H, Jiao W Y, Qin Z F, Dong M, Fan W B, Wang J G. . Microporous Mesoporous Mater., 2024, 370: 113073,
CrossRef Google scholar
[90]
Ren L M, Zhang Y B, Zeng S J, Zhu L F, Sun Q, Zhang H Y, Yang C G, Meng X J, Yang X G, Xiao F-S. . Chin. J. Catal., 2012, 33: 92,
CrossRef Google scholar
[91]
Liu P, Wu Q M, Yan K P, Wang L, Xiao F-S. . J. Catal., 2024, 432: 115442,
CrossRef Google scholar
[92]
Jiang J X, Xu Y, Cheng P, Sun Q M, Yu J H, Corma A, Xu R R. . Chem. Mater., 2011, 23: 4709,
CrossRef Google scholar
[93]
Lu T T, Yan W F, Xu R R. . Inorg. Chem. Front., 2019, 6: 1938,
CrossRef Google scholar
[94]
Meng X J, Xie B, Xiao F-S. . Chin. J. Catal., 2009, 30: 965
[95]
Muñiz J G R, Ramirez A M, Robles J M A, Melo P G, Bocard J C E, Martine A M M. . Lat. Am. Appl. Res., 2010, 4: 323
[96]
Ameh A E, Musyoka N M, Oyekola O, Louis B, Petrik L F. . Front. Chem., 2021, 9: 683125,
CrossRef Google scholar
[97]
Gao W Z, Amoo C C, Zhang G H, Javed M, Mazonde B, Lu C X, Yang R Q, Xing C, Tsubaki N. . Microporous Mesoporous Mater., 2019, 280: 187,
CrossRef Google scholar
[98]
Fischer J W A, Brenig A, Klose D, van Bokhoven J A, Sushkevich V L, Jeschke G. . Angew. Chem. Int. Ed., 2023, 62: e2023035
[99]
Lu K, Huang J, Ren L, Li C, Guan Y, Hu B W, Xu H, Jiang J G, Ma Y H, Wu P. . Angew. Chem. Int. Ed., 2020, 59: 6258,
CrossRef Google scholar
[100]
Zhou T, Wang B, Dai Z D, Jiang X, Wang Y. . Microporous Mesoporous Mater., 2021, 314: 110872,
CrossRef Google scholar
[101]
Liu X C, Lu P, Jiang W L, Shan Y L, Li S, Wang X S, Liu S W, Han L, Liu Y X. . Chem. Eng. Sci., 2023, 281: 118967,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/