Recent Advance in Electrocatalytic Water Splitting for Hydrogen Production by Layered Double Hydroxides

Tian Xia, Qinghui Ren, Jiangrong Yang, Zhenhua Li, Mingfei Shao, Xue Duan

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 577-589. DOI: 10.1007/s40242-024-4121-6
Review

Recent Advance in Electrocatalytic Water Splitting for Hydrogen Production by Layered Double Hydroxides

Author information +
History +

Abstract

Collecting green hydrogen (H2) from water splitting driven by renewable energy is a new competition to implement the construction of H2 energy industry and promote new economic growth for global governments. The common strategy to enhance the efficiency of H2 production is to reduce the potential of electrolytic cell that is the mainstream way to prepare efficient electrocatalysts. Layered double hydroxides (LDHs) are one of the most active electrocatalysts with adjustable active sites in contemporary research. In this review, we discuss the recent advanced progress of LDHs for hydrogen evolution reaction (HER) on cathode and oxygen evolution reaction (OER) or organic oxidation on anode and emphasize the influence of LDHs structure regulation in water electrolysis process (HER/OER) as well as the current development status of organic oxidation catalyzed by active oxygen species on anode. Finally, we propose the current challenges of LDHs in electrocatalysis and prospect their developing tendency and further application.

Keywords

Layered double hydroxide / Hydrogen production / Hydrogen evolution reaction (HER) / Oxygen evolution reaction (OER) / Electrocatalytic organic oxidation

Cite this article

Download citation ▾
Tian Xia, Qinghui Ren, Jiangrong Yang, Zhenhua Li, Mingfei Shao, Xue Duan. Recent Advance in Electrocatalytic Water Splitting for Hydrogen Production by Layered Double Hydroxides. Chemical Research in Chinese Universities, 2024, 40(4): 577‒589 https://doi.org/10.1007/s40242-024-4121-6

References

[1]
IRENA. . Geopolitics of the Energy Transformation: The Hydrogen Factor, 2022 Abu Dhabi International Renewable Energy Agency
[2]
Zhang J, Ma C, Jia S, Gu Y, Sun D, Tang Y, Sun H. . Adv. Energy Mater., 2023, 13: 2302436,
CrossRef Google scholar
[3]
Wang H, Yang T, Wang J, Zhou Z, Pei Z, Zhao S. . Chem, 2024, 10: 48,
CrossRef Google scholar
[4]
Zhou S, Shi L, Li Y, Yang T, Zhao S. . Adv. Funct. Mater., 2024, 34: 2400767,
CrossRef Google scholar
[5]
Zhao X, He D, Xia B Y, Sun Y, You B. . Adv. Mater., 2023, 35: e2210703,
CrossRef Google scholar
[6]
Hu W, Xie L, Gu C, Zheng W, Tu Y, Yu H, Huang B, Wang L. . Coord. Chem. Rev., 2024, 506: 215715,
CrossRef Google scholar
[7]
Zhao J, Zhang J-J, Li Z-Y, Bu X-H. . Small, 2020, 16: 2003916,
CrossRef Google scholar
[8]
Jiang F, Li Y, Pan Y. . Adv. Mater., 2024, 36: e2306309,
CrossRef Google scholar
[9]
Gao G, Sun Z, Chen X, Zhu G, Sun B, Huang X, Liu H K, Dou S X. . Coord. Chem. Rev., 2024, 509: 215777,
CrossRef Google scholar
[10]
Li Z, Sun L, Zhang Y, Han Y, Zhuang W, Tian L, Tan W. . Coord. Chem. Rev., 2024, 510: 215837,
CrossRef Google scholar
[11]
Li Z, Zhang X, Ou C, Zhang Y, Wang W, Dong S, Dong X. . Coord. Chem. Rev., 2023, 495: 2215318
[12]
Veeramani K, Janani G, Kim J, Surendran S, Lim J, Jesudass S C, Mahadik S, Lee H Y J, Kim T-H, Kim J K, Sim U. . Renew. Sust. Energy Rev., 2023, 177: 113227,
CrossRef Google scholar
[13]
Gao G, Zhu G, Chen X, Sun Z, Cabot A. . ACS Nano, 2023, 17: 20804,
CrossRef Google scholar
[14]
Wang Y, Zhang M, Liu Y, Zheng Z, Liu B, Chen M, Guan G, Yan K. . Adv. Sci. (Weinh), 2023, 10: e2207519,
CrossRef Google scholar
[15]
Tang C, Zheng Y, Jaroniec M, Qiao S Z. . Angew. Chem. Int. Ed. Engl., 2021, 60: 19572,
CrossRef Google scholar
[16]
Pizzoferrato R, Richetta M. . Crystals, 2020, 10: 1121,
CrossRef Google scholar
[17]
Li Z, Liu K, Fan K, Yang Y, Shao M, Wei M, Duan X. . Angew. Chem. Int. Ed. Engl., 2019, 58: 3962,
CrossRef Google scholar
[18]
Li Z, Zhang X, Cheng H, Liu J, Shao M, Wei M, Evans D G, Zhang H, Duan X. . Adv. Energy Mater., 2019, 10: 1900486,
CrossRef Google scholar
[19]
Zhang S, Li J, Jin B, Shao M. . Small, 2023, 19: e2301874,
CrossRef Google scholar
[20]
Gao M, Fan J, Li X, Wang Q, Li D, Feng J, Duan X. . Angew. Chem. Int. Ed. Engl., 2023, 62: e202216527,
CrossRef Google scholar
[21]
Pelalak R, Hassani A, Heidari Z, Zhou M. . Chem. Eng. J., 2023, 474: 145511,
CrossRef Google scholar
[22]
Pattappan D, Kapoor S, Islam S S, Lai Y T. . ACS Omega, 2023, 8: 24727,
CrossRef Google scholar
[23]
Hu J, Zhang Y, Dong M. . Adv. Funct. Mater., 2023, 34: 22312452
[24]
He T, Li Q, Lin T, Li J, Bai S, An S, Kong X, Song Y-F. . Chem. Eng. J., 2023, 462: 150692
[25]
Bian Y, Cai X, Lv Z, Xu Y, Wang H, Tan C, Liang R, Weng X. . Adv. Sci. (Weinh), 2023, 10: e2301806,
CrossRef Google scholar
[26]
Hou Y, Feng J, Tian R, Lu C, Duan X. . Angew. Chem. Int. Ed. Engl., 2023, 62: e202307573,
CrossRef Google scholar
[27]
Ding Y, Wang Z, Liang Z, Sun X, Sun Z, Zhao Y, Liu J, Wang C, Zeng Z, Fu L, Zeng M, Tang L. . Adv. Mater., 2023, 35: e2302860,
CrossRef Google scholar
[28]
Zhao J, Zhang J J, Li Z Y, Bu X H. . Small, 2020, 16: e2003916,
CrossRef Google scholar
[29]
Qiao W, Jin B, Xie W, Shao M, Wei M. . J. Energy Chem., 2022, 69: 9,
CrossRef Google scholar
[30]
Fan K, Xu P, Li Z, Shao M, Duan X. . Next Mater., 2023, 1: 100040,
CrossRef Google scholar
[31]
Ning C, Bai S, Wang J, Li Z, Han Z, Zhao Y, O’Hare D, Song Y-F. . Coord. Chem. Rev., 2023, 480: 215008,
CrossRef Google scholar
[32]
Yue C, Wang L, Wang H, Du J, Lei M, Pu M. . J. Phys. Chem. C, 2022, 126: 18351,
CrossRef Google scholar
[33]
Zhao G, Rui K, Dou S X, Sun W. . Adv. Funct. Mater., 2018, 28: 1803291,
CrossRef Google scholar
[34]
Song Y, Ji K, Duan H, Shao M. . Exploration (Beijing), 2021, 1: 20210050,
CrossRef Google scholar
[35]
Miao L, Jia W, Cao X, Jiao L. . Chem. Soc. Rev., 2024, 53: 2771,
CrossRef Google scholar
[36]
Wang J, Qing S, Tong X, Zhang K, Luo G, Ding J, Xu L. . Appl. Surf. Sci., 2023, 640: 158330,
CrossRef Google scholar
[37]
Mu X, Gu X, Dai S, Chen J, Cui Y, Chen Q, Yu M, Chen C, Liu S, Mu S. . Energy Environ. Sci., 2022, 15: 4048,
CrossRef Google scholar
[38]
Liu S, Zhu J, Sun M, Ma Z, Hu K, Nakajima T, Liu X, Schmuki P, Wang L. . J. Mater. Chem. A, 2020, 8: 2490,
CrossRef Google scholar
[39]
Zhai P, Xia M, Wu Y, Zhang G, Gao J, Zhang B, Cao S, Zhang Y, Li Z, Fan Z, Wang C, Zhang X, Miller J T, Sun L, Hou J. . Nat. Commun., 2021, 12: 4587,
CrossRef Google scholar
[40]
Jeghan S M N, Kim D, Lee Y, Kim M, Lee G. . Appl. Catal. B: Environ., 2022, 308: 121221,
CrossRef Google scholar
[41]
Dong J, Zhang X, Huang J, Hu J, Chen Z, Lai Y. . Chem. Eng. J., 2021, 412: 128556,
CrossRef Google scholar
[42]
Fan R, Mu Q, Wei Z, Peng Y, Shen M. . J. Mater. Chem. A, 2020, 8: 9871,
CrossRef Google scholar
[43]
Zhu K, Chen J, Wang W, Liao J, Dong J, Chee M O L, Wang N, Dong P, Ajayan P M, Gao S, Shen J, Ye M. . Adv. Funct. Mater., 2020, 30: 2003556,
CrossRef Google scholar
[44]
Tang Y, Liu Q, Dong L, Wu H B, Yu X-Y. . Appl. Catal. B: Environ., 2020, 266: 118627,
CrossRef Google scholar
[45]
Wang S., Wu J., Xu Y., Liang D., Li D., Chen D., Liu G., Feng Y., Small, 2024, e2311221.
[46]
Sun H, Chen L, Lian Y, Yang W, Lin L, Chen Y, Xu J, Wang D, Yang X, Rummerli M H, Guo J, Zhong J, Deng Z, Jiao Y, Peng Y, Qiao S. . Adv. Mater., 2020, 32: e2006784,
CrossRef Google scholar
[47]
Zhang Y, Lee S, Jeong S, Son E, Baik J M, Han Y K, Park H. . Adv. Funct. Mater., 2023, 34: 2309250,
CrossRef Google scholar
[48]
Feng H, Yu J, Tang L, Wang J, Dong H, Ni T, Tang J, Tang W, Zhu X, Liang C. . Appl. Catal. B: Environ., 2021, 297: 120478,
CrossRef Google scholar
[49]
Shen B, Feng Y, Wang Y, Sun P, Yang L, Jiang Q, He H, Huang H. . Carbon, 2023, 212: 3375,
CrossRef Google scholar
[50]
Dang Y, Li X, Chen Z, Zhao X, Ma B, Chen Y. . Small, 2023, 19: e2303932,
CrossRef Google scholar
[51]
Zeng K, Tian M, Chen X, Zhang J, Rummeli M H, Strasser P, Sun J, Yang R. . Chem. Eng. J., 2023, 452: 139151,
CrossRef Google scholar
[52]
Wang D, Li Q, Han C, Lu Q, Xing Z, Yang X. . Nat. Commun., 2019, 10: 3899,
CrossRef Google scholar
[53]
Li X-P, Han W-K, Xiao K, Ouyang T, Li N, Peng F, Liu Z-Q. . Catal. Sci. Technol., 2020, 10: 4184,
CrossRef Google scholar
[54]
Chen Y., Liu Y., Zhai W., Liu H., Sakthivel T., Guo S., Dai Z., Adv. Energy Mater., 2024, 2400059.
[55]
Yu J, Lu K, Wang C, Wang Z, Fan C, Bai G, Wang G, Yu F. . Electrochim. Acta, 2021, 390: 138824,
CrossRef Google scholar
[56]
Song J, Chen J-L, Xu Z, Lin R Y-Y. . Chem. Commun., 2022, 58: 10655,
CrossRef Google scholar
[57]
Liu P F, Yang S, Zhang B, Yang H G. . ACS Appl. Mater. Interfaces, 2016, 8: 34474,
CrossRef Google scholar
[58]
Guo J, Wei Z, Wang K, Zhang H. . Int. J. Hydrogen Energy, 2021, 46: 27529,
CrossRef Google scholar
[59]
Han X, Suo N, Chen C, Lin Z, Dou Z, He X, Cui L. . Int. J. Hydrogen Energy, 2019, 44: 29876,
CrossRef Google scholar
[60]
Lee Y J, Park S-K. . Small, 2022, 18: 2200586,
CrossRef Google scholar
[61]
Zhang T, Hang L, Sun Y, Men D, Li X, Wen L, Lyu X, Li Y. . Nanoscale Horiz., 2019, 4: 1132,
CrossRef Google scholar
[62]
Yu L, Zhou H, Sun J, Qin F, Yu F, Bao J, Yu Y, Chen S, Ren Z. . Energy Environ. Sci., 2017, 10: 1820,
CrossRef Google scholar
[63]
Ma Y, Liu D, Wu H, Li M, Ding S, Hall A S, Xiao C. . ACS Appl. Mater. Interfaces, 2021, 13: 26055,
CrossRef Google scholar
[64]
Chen W, Wu B, Wang Y, Zhou W, Li Y, Liu T, Xie C, Xu L, Du S, Song M, Wang D, Liu Y, Li Y, Liu J, Zou Y, Chen R, Chen C, Zheng J, Li Y, Chen J, Wang S. . Energy Environ. Sci., 2021, 14: 6428,
CrossRef Google scholar
[65]
Wang Y., Wang T., Arandiyan H., Song G., Sun H., Sabri Y., Zhao C., Shao Z., Kawi S., Adv. Mater., 2024, e2313378.
[66]
Yang M Q, Wang J, Wu H, Ho G W. . Small, 2018, 14: e1703323,
CrossRef Google scholar
[67]
Chen B Q, Xia H Y, Mende L K, Lee C H, Wang S B, Chen A Z, Xu Z P, Kankala R K. . Adv. Mater. Interfaces, 2022, 9: 2200373,
CrossRef Google scholar
[68]
Anantharaj S, Noda S, Jothi V R, Yi S, Driess M, Menezes P W. . Angew. Chem. Int. Ed. Engl., 2021, 60: 18981,
CrossRef Google scholar
[69]
Zhou L, Shao M, Wei M, Duan X. . J. Energy Chem., 2017, 26: 1094,
CrossRef Google scholar
[70]
Lei H, Wan Q, Tan S, Wang Z, Mai W. . Adv. Mater., 2023, 35: e2208209,
CrossRef Google scholar
[71]
Feng H, Tang L, Zeng G, Yu J, Deng Y, Zhou Y, Wang J, Feng C, Luo T, Shao B. . Nano Energy, 2020, 67: 104174,
CrossRef Google scholar
[72]
Tan L, Wang H, Qi C, Peng X, Pan X, Wu X, Wang Z, Ye L, Xiao Q, Luo W, Gao H, Hou W, Li X, Zhan T. . Appl. Catal. B: Environ., 2024, 342: 1233352,
CrossRef Google scholar
[73]
De A, Madhu R, Bera K, Dhandapani H N, Nagappan S, Singha Roy S, Kundu S. . J. Mater. Chem. A, 2023, 11: 25055,
CrossRef Google scholar
[74]
Huo J M, Ma Z L, Wang Y, Cao Y J, Jiang Y C, Li S N, Chen Y, Hu M C, Zhai Q G. . Small, 2023, 19: e2207044,
CrossRef Google scholar
[75]
VahidMohammadi A, Rosen J, Gogotsi Y. . Science, 2021, 372: eabf1581,
CrossRef Google scholar
[76]
Khan K, Tareen A K, Iqbal M, Ye Z, Xie Z, Mahmood A, Mahmood N, Zhang H. . Small, 2023, 19: e2206147,
CrossRef Google scholar
[77]
Batool M, Hameed A, Nadeem M A. . Coord. Chem. Rev., 2023, 480: 215029,
CrossRef Google scholar
[78]
Sahoo D P, Das K K, Mansingh S, Sultana S, Parida K. . Coord. Chem. Rev., 2022, 469: 214666,
CrossRef Google scholar
[79]
Roy Chowdhury P, Medhi H, Bhattacharyya K G, Mustansar Hussain C. . Coord. Chem. Rev., 2023, 483: 215083,
CrossRef Google scholar
[80]
Deng Y, Lu Y, Dai R, Xiang M, Zhang Z, Zhang X, Zhou Q, Gu H, Bai J. . J. Colloid Interf. Sci., 2022, 627: 215,
CrossRef Google scholar
[81]
Lee J, Jung H, Park Y S, Woo S, Yang J, Jang M J, Jeong J, Kwon N, Lim B, Han J W, Choi S M. . Small, 2021, 17: 2100639,
CrossRef Google scholar
[82]
Lin Y, Wang H, Peng C-K, Bu L, Chiang C-L, Tian K, Zhao Y, Zhao J, Lin Y-G, Lee J-M, Gao L. . Small, 2020, 16: 2002426,
CrossRef Google scholar
[83]
Liu S, Zhang H, Hu E, Zhu T, Zhou C, Huang Y, Ling M, Gao X, Lin Z. . J. Mater. Chem. A, 2021, 9: 23697,
CrossRef Google scholar
[84]
Wang B, Han X, Guo C, Jing J, Yang C, Li Y, Han A, Wang D, Liu J. . Appl. Catal. B: Environ., 2021, 298: 120580,
CrossRef Google scholar
[85]
Jia Q, Gao J, Qiu C, Dong L, Jiang Y, Liu X, Hong M, Yang S. . Chem. Eng. J., 2022, 433: 134552,
CrossRef Google scholar
[86]
Wang Y, Qiao M, Li Y, Wang S. . Small, 2018, 14: e1800136,
CrossRef Google scholar
[87]
Wang Y, Tao S, Lin H, Wang G, Zhao K, Cai R, Tao K, Zhang C, Sun M, Hu J, Huang B, Yang S. . Nano Energy, 2021, 81: 105606,
CrossRef Google scholar
[88]
Zhou Y, Zhang W, Hu J, Li D, Yin X, Gao Q. . ACS Sustain. Chem. Eng., 2021, 9: 7390,
CrossRef Google scholar
[89]
Zhang W, Li N, Xie Z, Liu Z, Huang Q. . Int. J. Hydrogen Energy, 2019, 44: 21858,
CrossRef Google scholar
[90]
Li Z, Xiao K, Yu C, Wang H, Li Q. . Int. J. Hydrogen Energy, 2021, 46: 34239,
CrossRef Google scholar
[91]
Li W, Chen S, Zhong M, Wang C, Lu X. . Chem. Eng. J., 2021, 415: 128879,
CrossRef Google scholar
[92]
He K, Tsega T T, Liu X, Zai J, Li X-H, Liu X, Li W, Ali N, Qian X. . Angew. Chem. Int. Ed., 2019, 58: 11903,
CrossRef Google scholar
[93]
Ouyang Q, Cheng S, Yang C, Lei Z. . J. Mater. Chem. A, 2022, 10: 11938,
CrossRef Google scholar
[94]
Hu L, Tian L, Ding X, Wang X, Wang X, Qin Y, Gu W, Shi L, Zhu C. . Inorg. Chem. Front., 2022, 9: 5296,
CrossRef Google scholar
[95]
Hu L, Li M, Wei X, Wang H, Wu Y, Wen J, Gu W, Zhu C. . Chem. Eng. J., 2020, 398: 125605,
CrossRef Google scholar
[96]
Wang W, Lu Y, Zhao M, Luo R, Yang Y, Peng T, Yan H, Liu X, Luo Y. . ACS Nano, 2019, 13: 12206,
CrossRef Google scholar
[97]
Jia L, Du G, Han D, Hao Y, Zhao W, Fan Y, Su Q, Ding S, Xu B. . J. Mater. Chem. A, 2021, 9: 27639,
CrossRef Google scholar
[98]
Li J, Wang L, He H, Chen Y, Gao Z, Ma N, Wang B, Zheng L, Li R, Wei Y, Xu J, Xu Y, Cheng B, Yin Z, Ma D. . Nano Res., 2022, 15: 4986,
CrossRef Google scholar
[99]
Gao H, Sun W, Tian X, Liao J, Ma C, Hu Y, Du G, Yang J, Ge C. . ACS Appl. Mater., 2022, 14: 15205,
CrossRef Google scholar
[100]
Zhang F, Liu Y, Wu L, Ning M, Song S, Xiao X, Hadjiev V G, Fan D E, Wang D, Yu L, Chen S, Ren Z. . Mater. Today Phys., 2022, 27: 100941
[101]
Li C-F, Xie L-J, Zhao J-W, Gu L-F, Wu J-Q, Li G-R. . Appl. Catal. B: Environ., 2022, 306: 124140
[102]
Zhang S, Wang L, Xie T, Chen Q, Peng W, Li Y, Zhang F, Fan X. . J. Mater. Chem. A, 2022, 10: 21523,
CrossRef Google scholar
[103]
Li Y, Guo H, Zhang Y, Zhang H, Zhao J, Song R. . J. Mater. Chem. A, 2022, 10: 18989,
CrossRef Google scholar
[104]
Wang X, Wang J, Liao J, Wang L, Li M, Xu R, Yang L. . Appl. Surf. Sci., 2022, 602: 154287,
CrossRef Google scholar
[105]
Feng X, Jiao Q, Chen W, Dang Y, Dai Z, Suib S L, Zhang J, Zhao Y, Li H, Feng C. . Appl. Catal. B: Environ., 2021, 286: 119869,
CrossRef Google scholar
[106]
Zhang X, Fan J, Lu X, Han Z, Cazorla C, Hu L, Wu T, Chu D. . Chem. Eng. J., 2021, 415: 129048,
CrossRef Google scholar
[107]
Cao J, Mou T, Mei B, Yao P, Han C, Gong X, Song P, Jiang Z, Frauenheim T, Xiao J, Xu W. . Angew. Chem. Int. Ed. Engl., 2023, 62: e202310973,
CrossRef Google scholar
[108]
Liao H, Ni G, Tan P, Liu Y, Chen K, Wang G, Liu M, Pan J. . Appl. Catal. B: Environ., 2022, 317: 121713,
CrossRef Google scholar
[109]
Zhou S, He H, Li J, Ye Z, Liu Z, Shi J, Hu Y, Cai W. . Adv. Funct. Mater., 2023, 34: 2313770,
CrossRef Google scholar
[110]
He L, Wang N, Xiang M, Zhong L, Komarneni S, Hu W. . Appl. Catal. B: Environ., 2024, 345: 123686,
CrossRef Google scholar
[111]
Zhai Y, Ren X, Sun Y, Li D, Wang B, Liu S. . Appl. Catal. B: Environ., 2023, 323: 122091,
CrossRef Google scholar
[112]
Wang F, Zou P, Zhang Y, Pan W, Li Y, Liang L, Chen C, Liu H, Zheng S. . Nat. Commun., 2023, 14: 6019,
CrossRef Google scholar
[113]
Zhai P, Wang C, Zhao Y, Zhang Y, Gao J, Sun L, Hou J. . Nat. Commun., 2023, 14: 1873,
CrossRef Google scholar
[114]
Liu Z Q, Liang X, Ma F X, Xiong Y X, Zhang G, Chen G, Zhen L, Xu C Y. . Adv. Energy Mater., 2023, 13: 2204019,
CrossRef Google scholar
[115]
Liu J, Ji Y, Nai J, Niu X, Luo Y, Guo L, Yang S. . Energy Environ. Sci., 2018, 11: 1736,
CrossRef Google scholar
[116]
Suliman M, Al Ghamdi A, Baroud T, Drmosh Q, Rafatullah M, Yamani Z, Qamar M. . Int. J. Hydrogen Energy, 2022, 47: 23498,
CrossRef Google scholar
[117]
Zhao J-W, Shi Z-X, Li C-F, Gu L-F, Li G-R. . Chem. Sci., 2021, 12: 650,
CrossRef Google scholar
[118]
Zhang Y, Xie W, Ma J, Chen L, Chen C, Zhang X, Shao M. . J. Energy Chem., 2021, 60: 127,
CrossRef Google scholar
[119]
Zan L, Zhang H, Ye Z, Wei Q, Dong H, Sun S, Weng Q, Bo X, Xia H, Li Y, Fu F. . Inorg. Chem. Front., 2022, 9: 5527,
CrossRef Google scholar
[120]
Wang X, Tuo Y, Zhou Y, Wang D, Wang S, Zhang J. . Chem. Eng. J., 2021, 403: 126297,
CrossRef Google scholar
[121]
Du F, Ling X, Wang Z, Guo S, Zhang Y, He H, Li G, Jiang C, Zhou Y, Zou Z. . J. Catal., 2020, 389: 132,
CrossRef Google scholar
[122]
Wang X, He Y, Zhou Y, Li R, Lu W, Wang K, Liu W. . Int. J. Hydrogen Energy, 2022, 47: 23644,
CrossRef Google scholar
[123]
Zhou D, Li P, Lin X, McKinley A, Kuang Y, Liu W, Lin W F, Sun X, Duan X. . Chem. Soc. Rev., 2021, 50: 8790,
CrossRef Google scholar
[124]
Bai Y, Wu Y, Zhou X, Ye Y, Nie K, Wang J, Xie M, Zhang Z, Liu Z, Cheng T, Gao C. . Nat. Commun., 2022, 13: 6094,
CrossRef Google scholar
[125]
Yan D, Xia C, Zhang W, Hu Q, He C, Xia B Y, Wang S. . Adv. Energy Mater., 2022, 12: 2202317,
CrossRef Google scholar
[126]
Hameed A, Batool M, Liu Z, Nadeem M A, Jin R. . ACS Energy Lett., 2022, 7: 3311,
CrossRef Google scholar
[127]
Peng L, Yang N, Yang Y, Wang Q, Xie X, Sun-Waterhouse D, Shang L, Zhang T, Waterhouse G I N. . Angew. Chem. Int. Ed. Engl., 2021, 60: 24612,
CrossRef Google scholar
[128]
Xu X, Shao Z, Jiang S P. . Energy Technol., 2022, 10: 2200573,
CrossRef Google scholar
[129]
Kulkarni R, Lingamdinne L P, Karri R R, Momin Z H, Koduru J R, Chang Y-Y. . Coord. Chem. Rev., 2023, 497: 215460,
CrossRef Google scholar
[130]
Mu G, Wang G, Huang Q, Miao Y, Wen D, Lin D, Xu C, Wan Y, Xie F, Guo W, Zou R. . Adv. Funct. Mater., 2023, 33: 2211260,
CrossRef Google scholar
[131]
Xiao C, Cheng L, Wang Y, Liu J, Chen R, Jiang H, Li Y, Li C. . J. Mater. Chem. A, 2022, 10: 1329,
CrossRef Google scholar
[132]
Jiang S, Wu M, Xiao T, Yin X, Gao Q, Xu C, Zhang M, Peng H Q, Liu B. . ACS Appl. Mater. Interfaces, 2023, 15: 55870,
CrossRef Google scholar
[133]
Liu B, Wang X, Wang S, Peng H-Q, Xiao T, Liu G, Bai S, Zhao Y, Zhang W, Song Y-F. . Mater. Today Energy, 2022, 28: 101082,
CrossRef Google scholar
[134]
Das A K, Pan U N, Sharma V, Kim N H, Lee J H. . Chem. Eng. J., 2021, 417: 128019,
CrossRef Google scholar
[135]
Zhang Y, Wu X, Fu G, Si F, Fu X-Z, Luo J-L. . Int. J. Hydrogen Energy, 2022, 47: 17150,
CrossRef Google scholar
[136]
Xu L, Wang Z, Chen X, Qu Z, Li F, Yang W. . Electrochim. Acta, 2018, 260: 898,
CrossRef Google scholar
[137]
Yang X, Gao Y, Zhao Z, Tian Y, Kong X, Lei X, Zhang F. . Appl. Clay Sci., 2021, 202: 105964,
CrossRef Google scholar
[138]
Dong L, Chang G-R, Feng Y, Yao X-Z, Yu X-Y. . Rare Metals, 2022, 41: 1583,
CrossRef Google scholar
[139]
He Z, Hwang J, Gong Z, Zhou M, Zhang N, Kang X, Han J W, Chen Y. . Nat. Commun., 2022, 13: 3777,
CrossRef Google scholar
[140]
Sun F, Zhou Y, You Z, Xia H, Tuo Y, Wang S, Jia C, Zhang J. . Small, 2021, 17: e2103307,
CrossRef Google scholar
[141]
Qi Y-F, Wang K-Y, Sun Y, Wang J, Wang C. . ACS Sustain. Chem. Eng., 2022, 10: 645,
CrossRef Google scholar
[142]
Zhang M, Liu Y, Liu B, Chen Z, Xu H, Yan K. . ACS Catal., 2020, 10: 5179,
CrossRef Google scholar
[143]
Liu B, Xu S, Zhang M, Li X, Decarolis D, Liu Y, Wang Y, Gibson E K, Catlow C R A, Yan K. . Green Chem., 2021, 23: 4034,
CrossRef Google scholar
[144]
Deng X, Kang X, Li M, Xiang K, Wang C, Guo Z, Zhang J, Fu X-Z, Luo J-L. . J. Mater. Chem. A, 2020, 8: 1138,
CrossRef Google scholar
[145]
Xie Y, Zhou Z, Yang N, Zhao G. . Adv. Funct. Mater., 2021, 31: 2404219
[146]
Song Y, Li Z, Fan K, Ren Z, Xie W, Yang Y, Shao M, Wei M. . Appl. Catal. B: Environ., 2021, 299: 120669,
CrossRef Google scholar
[147]
Zheng Z, Wu D, Chen L, Chen S, Wan H, Chen G, Zhang N, Liu X, Ma R. . Appl. Catal. B: Environ., 2024, 340: 123214,
CrossRef Google scholar
[148]
Mariappan A., Mannu P., Ranjith K. S., Nga T. T. T., Han Y. K., Dong C. L., Dharman R. K., Oh T. H., Small, 2024, e2310112.
[149]
Wang Z, Liu W, Bao J, Song Y, She X, Hua Y, Lv G, Yuan J, Li H, Xu H. . Chem. Eng. J., 2022, 430: 133100,
CrossRef Google scholar
[150]
Ding Y, Du X, Zhang X. . Appl. Surf. Sci., 2022, 584: 152622,
CrossRef Google scholar
[151]
Wang K, Hou M, Huang W, Cao Q, Zhao Y, Sun X, Ding R, Lin W, Liu E, Gao P. . J. Colloid Interface Sci., 2022, 615: 309,
CrossRef Google scholar
[152]
Shilpa N, Pandikassala A, Krishnaraj P, Walko P S, Devi R N, Kurungot S. . ACS Appl. Mater. Interfaces, 2022, 14: 16222,
CrossRef Google scholar
[153]
Fan J, Du X. . Dalton Trans., 2022, 51: 8240,
CrossRef Google scholar
[154]
Chen L, Wang H, Tan L, Qiao D, Liu X, Wen Y, Hou W, Zhan T. . J. Colloid Interface Sci., 2022, 618: 141,
CrossRef Google scholar
[155]
Liu X, Han Y, Guo Y, Zhao X, Pan D, Li K, Wen Z. . Adv. Energy Sustainability Res., 2022, 3: 220005
[156]
Liu C., Tang Q., Fan P., Wei Y., Yu Y., Wen X., Li X., Li L., Qu Q., Small, 2024, e2308283.
[157]
Chen W, Wang Y, Wu B, Shi J, Li Y, Xu L, Xie C, Zhou W, Huang Y C, Wang T, Du S, Song M, Wang D, Chen C, Zheng J, Liu J, Dong C L, Zou Y, Chen J, Wang S. . Adv. Mater., 2022, 34: e2105320,
CrossRef Google scholar
[158]
Miao Y, Li Z, Song Y, Fan K, Guo J, Li R, Shao M. . Appl. Catal. B: Environ., 2023, 323: 122147,
CrossRef Google scholar
[159]
Yu H, Wang W, Mao Q, Deng K, Wang Z, Xu Y, Li X, Wang H, Wang L. . Appl. Catal. B: Environ., 2023, 330: 122617,
CrossRef Google scholar
[160]
Qian Q, He X, Li Z, Chen Y, Feng Y, Cheng M, Zhang H, Wang W, Xiao C, Zhang G, Xie Y. . Adv. Mater., 2023, 35: e2300935,
CrossRef Google scholar
[161]
Gao L, Wen X, Liu S, Qu D, Ma Y, Feng J, Zhong Z, Guan H, Niu L. . J. Mater. Chem. A, 2022, 10: 21135,
CrossRef Google scholar
[162]
Guo S, Ma M, Ge R, Algadi H, Shao Q. . Adv. Compos. Hybrid Mater., 2023, 6: 158,
CrossRef Google scholar
[163]
Wang T, Cao X, Jiao L. . Angew. Chem. Int. Ed. Engl., 2022, 61: e202213328,
CrossRef Google scholar
[164]
Zeng M, Wu J, Li Z, Wu H, Wang J, Wang H, He L, Yang X. . ACS Sustainable Chem. Eng., 2019, 7: 4777,
CrossRef Google scholar
[165]
Sun H, Zhang W, Li J-G, Li Z, Ao X, Xue K-H, Ostrikov K K, Tang J, Wang C. . Appl. Catal. B: Environ., 2021, 284: 119740,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/