Granular Ln-MOF@Activated Carbon Composite for Highly Selective and Sensitive Detection of Cr3+ Cations

Yuebin Liu , Jingran Yu , Zhiyu Zhang , Jinhua Feng , Weihai Lin , Ming Xue

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1275 -1281.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1275 -1281. DOI: 10.1007/s40242-024-4107-4
Article

Granular Ln-MOF@Activated Carbon Composite for Highly Selective and Sensitive Detection of Cr3+ Cations

Author information +
History +
PDF

Abstract

Lanthanide metal-organic frameworks (MOFs) have received special attention due to their unusual coordination characteristics and exceptional luminescence properties, while their development has extremely limited by the cost effective and powder form. Herein, a gentle and facile strategy was developed to create a granular lanthanide MOFs@activated carbon (AC) composite. The obtained granular Tb-BTC@AC composite displays high fluorescent selectivity and sensitivity towards Cr3+ cations in water with quenching efficiency up to 90.12%, and shows great sensitivity in the range of 10−5–10−4 mol/L with the Stern-Volmer constant of 2.224×103 L/mol. Benefited by the high surface area, the abundant self-assembly space was provided for the self-assembling of the Lanthanide MOFs, which leads to promising Cr3+ cation-recognition ability with low MOF quantity. Also, the large size (with an average diameter of 2 mm) and shaped form of this new composite material reduced the threshold of MOF application.

Keywords

Metal-organic framework (MOF) / Lanthanide / Luminescence probe / MOF-shaping

Cite this article

Download citation ▾
Yuebin Liu, Jingran Yu, Zhiyu Zhang, Jinhua Feng, Weihai Lin, Ming Xue. Granular Ln-MOF@Activated Carbon Composite for Highly Selective and Sensitive Detection of Cr3+ Cations. Chemical Research in Chinese Universities, 2024, 40(6): 1275-1281 DOI:10.1007/s40242-024-4107-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dai D, Li Z, Yang J, Wang C, Wu J-R, Wang Y, Zhang D, Yang Y. J. Am. Chem. Soc., 2019, 141: 4756

[2]

Sáenz-García D, Figuerola A, Turnes P, Leal L, Palomino Cabello C. Inorg. Chem., 2023, 62: 19404

[3]

Yoo J, Ryu U, Kwon W, Choi K. Sens. ActuatorB: Chem., 2019, 283: 426

[4]

Paithankar J, Saini S, Dwivedi S, Sharma A, Chowdhuri D. Chemosphere, 2021, 262: 128350

[5]

Lv M, Zhang T, Ya H, Xing Y, Wang X, Jiang B. Chemosphere, 2023, 315: 137745

[6]

Liu Y, Ke X, Wu X, Ke C, Chen R, Chen X, Zheng X, Jin Y, Van der Bruggen B. Environ. Sci. Technol., 2020, 54: 13304

[7]

Xia Y, Bao G, Peng X, Wu X, Lu H, Zhong Y, Li W, He J, Liu S, Fan Q, Li S, Xiao W, Yuan H. Anal. Chim. Acta, 2022, 1221: 340115

[8]

Tang Y, Wang P, Wang R, Yuan H, Xin Y, Ren X, Chen Q, Yin H. J. Mat. Chem. C, 2022, 10: 616

[9]

Qiu S, Xue M, Zhu G. Chem. Soc. Rev., 2014, 43: 6116

[10]

He J, Xu J, Yin J, Li N, Bu X. Sci. China Mater., 2019, 62: 1655

[11]

Chen B, Wang L, Xiao Y, Fronczek F R, Xue M, Cui Y, Qian G. Angew. Chem. Int. Ed., 2008, 48: 500

[12]

Yang X, Lin X, Zhao Y, Zhao Y, Yan D. Angew. Chem. Int. Ed., 2017, 56: 7853

[13]

Wang M F, Deng Y H, Hong Y X, Gu J H, Cao Y Y, Liu Q, Braunstein P, Lang J P. Nat. Commun., 2023, 14: 7766

[14]

Eskandari H, Amirzehni M, Asadollahzadeh H, Hassanzadeh J, Eslami P. Sensor. Actuat. B: Chem., 2018, 275: 145

[15]

Zhang Q Q, Wang Y, Braunstein P, Lang J P. Chem. Soc. Rev., 2024, 53: 5227

[16]

Dang S, Ma E, Sun Z, Zhang H. J. Mat. Chem., 2012, 22: 16920

[17]

Hao J N, Yan B. Chem. Comm., 2015, 51: 7737

[18]

Zhao J, Wang Y, Dong W, Wu Y, Li D, Zhang Q. Inorg. Chem., 2016, 55: 3265

[19]

Chen S, Shi Z, Qin L, Jia H, Zheng H. Cryst. Growth Des., 2017, 17: 67

[20]

Chen B, Yang Y, Zapata F, Lin G, Qian G, Lobkovsky E. Adv. Mater., 2007, 19: 1693

[21]

Hao Z, Song X, Zhu M, Meng X, Zhao S N, Su S, Yang W, Song S, Zhang H. J. Mat. Chem. A, 2013, 1: 11043

[22]

Guo Z, Xu H, Su S, Cai J, Dang S, Xiang S, Qian G, Zhang H, O’Keeffe M, Chen B L. Chem. Comm., 2011, 47: 5551

[23]

Liu C Y, Chen X R, Chen H X, Niu Z, Hirao H, Braunstein P, Lang J P. J. Am. Chem. Soc., 2022, 142: 6690

[24]

Feng X, Shang Y, Zhang K, Hong M, Li J, Xu H, Wang L, Li Z. Cryst. Eng. Comm., 2022, 24: 4187

[25]

Yu M, Xie Y, Wang X, Li Y, Li G. ACS Appl. Mater. Interfaces, 2019, 11: 21201

[26]

Yang D, Shi Y, Xiao T, Fang Y, Zheng X. Inorg. Chem., 2023, 62: 6084

[27]

Wang C, Liu X, Demir N, Chen J, Li K. Chem. Soc. Rev., 2016, 45: 5107

[28]

Wu S, Lin Y, Liu J, Shi W, Yang G, Cheng P. Adv. Funct. Mater., 2018, 28: 1707169

[29]

Lei M, Ge F, Gao X, Shi Z, Zheng H. Inorg. Chem., 2021, 60: 10513

[30]

Liu W, Dai X, Wang Y, Song L P, Zhang L, Zhang D, Xie J, Chen L, Juan D, Wang J, Chai Z, Wang S. Environ. Sci. Technol., 2019, 53: 332

[31]

Lim G J, Wu Y, Shah B, Koh J, Liu C, Zhao D, Cheetham A, Wang K J, Ding J. ACS Mater. Lett., 2019, 1: 147

[32]

Arslan H, Shekhah O, Wohlgemuth J, Franzreb M, Fischer R, Wöll C. Adv. Funct. Mater., 2011, 21: 4228

[33]

Yang C, Zhu Y, Wang J, Sun W, Yang L, Lin H, Lv S. Chem. Eng. J., 2021, 426: 131724

[34]

Chen B, Wang L, Zapata F, Qian G, Lobkovsky E. J. Am. Chem. Soc., 2008, 130: 6718

[35]

Xu H, Liu F, Cui Y, Chen B, Qian G. Chem. Comm., 2011, 47: 3153

[36]

Bhatnagar A, Hogland W, Marques M, Sillanpää M. Chem. Eng. J., 2013, 219: 499

[37]

Baccar R, Sarrà M, Bouzid J, Feki M, Blánquez P. Chem. Eng. J., 2012, 310: 211

[38]

Crini G, Lichtfouse E, Wilson L, Morin-Crini N. Environ. Chem. Lett., 2019, 17: 195

[39]

Ndagjimana P, Liu X, Yu G, Wang Y. J. Hazard. Mater., 2019, 368: 602

[40]

Indherjith S, Karthikeyan S, Monica J H R, Krishna Kumar K. Sep. Sci. Technol., 2018, 54: 667

[41]

Mawlood I, Saod W, Al-Rawi A, Aljumialy A, Hilal N. Environ. Monit. Assess., 2024, 196: 364

[42]

Kuang Y, Zhang X, Zhou S. Water, 2020, 12: 587

[43]

Rosi N, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi O. J. Am. Chem. Soc., 2005, 127: 1504

[44]

Liu S, Li X, Zhang H. New J. Chem., 2020, 44: 6269

[45]

Garg A, Almási M, Saini R, Paul D R, Sharma A, Jain A, Jain I. Environ. Sci. Pollut. R., 2023, 30: 98548

[46]

Sravani V, Gupta S, Sreenivasulu B, Gangopadhyay P, Rao C, Suresh A, Sivaraman N. Opt. Mater., 2022, 133: 112944

[47]

Yuan Z., Hou G., Han L., Z. Anorg. Allg. Chem., 2022, 648.

[48]

Yu X, Ryadun A, Potapov A, Fedin V. J. Hazard. Mater., 2023, 452: 2311939

[49]

Lei M Y, Ge F Y, Gao X J, Shi Z Q, Zheng H G. Inorg. Chem., 2021, 60: 10513

[50]

Yang W T, Bai Z Q, Shi W Q, Yuan L Y, Tian T, Chai Z F, Wang H, Sun Z M. Chem. Comm., 2013, 49: 10415

[51]

Ma H Y, Wu Q, Ma K X, Yang H, Li D C, Dou J M, Li Y W, Wang S N. J. Mol. Struct., 2023, 1291: 136009

[52]

Yu H H, Fan MY, Liu Q, Su Z M, Li X, Pan Q Q, Hu X L. Inorg. Chem., 2020, 59: 2005

[53]

Li J X, Yu B Q, Fan L H, Wang L, Zhao Y C, Sun C Y, Li W J, Chang Z D. J. Solid State Chem., 2022, 306: 122782

AI Summary AI Mindmap
PDF

229

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/