Granular Ln-MOF@Activated Carbon Composite for Highly Selective and Sensitive Detection of Cr3+ Cations

Yuebin Liu, Jingran Yu, Zhiyu Zhang, Jinhua Feng, Weihai Lin, Ming Xue

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1275-1281.

Chemical Research in Chinese Universities All Journals
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (6) : 1275-1281. DOI: 10.1007/s40242-024-4107-4
Article

Granular Ln-MOF@Activated Carbon Composite for Highly Selective and Sensitive Detection of Cr3+ Cations

Author information +
History +

Abstract

Lanthanide metal-organic frameworks (MOFs) have received special attention due to their unusual coordination characteristics and exceptional luminescence properties, while their development has extremely limited by the cost effective and powder form. Herein, a gentle and facile strategy was developed to create a granular lanthanide MOFs@activated carbon (AC) composite. The obtained granular Tb-BTC@AC composite displays high fluorescent selectivity and sensitivity towards Cr3+ cations in water with quenching efficiency up to 90.12%, and shows great sensitivity in the range of 10−5–10−4 mol/L with the Stern-Volmer constant of 2.224×103 L/mol. Benefited by the high surface area, the abundant self-assembly space was provided for the self-assembling of the Lanthanide MOFs, which leads to promising Cr3+ cation-recognition ability with low MOF quantity. Also, the large size (with an average diameter of 2 mm) and shaped form of this new composite material reduced the threshold of MOF application.

Cite this article

Download citation ▾
Yuebin Liu, Jingran Yu, Zhiyu Zhang, Jinhua Feng, Weihai Lin, Ming Xue. Granular Ln-MOF@Activated Carbon Composite for Highly Selective and Sensitive Detection of Cr3+ Cations. Chemical Research in Chinese Universities, 2024, 40(6): 1275‒1281 https://doi.org/10.1007/s40242-024-4107-4
This is a preview of subscription content, contact us for subscripton.

References

[1]
DaiD, LiZ, YangJ, WangC, WuJ-R, WangY, ZhangD, YangY. J. Am. Chem. Soc., 2019, 141: 4756
[2]
Sáenz-GarcíaD, FiguerolaA, TurnesP, LealL, Palomino CabelloC. Inorg. Chem., 2023, 62: 19404
[3]
YooJ, RyuU, KwonW, ChoiK. Sens. ActuatorB: Chem., 2019, 283: 426
[4]
PaithankarJ, SainiS, DwivediS, SharmaA, ChowdhuriD. Chemosphere, 2021, 262: 128350
[5]
LvM, ZhangT, YaH, XingY, WangX, JiangB. Chemosphere, 2023, 315: 137745
[6]
LiuY, KeX, WuX, KeC, ChenR, ChenX, ZhengX, JinY, Van der BruggenB. Environ. Sci. Technol., 2020, 54: 13304
[7]
XiaY, BaoG, PengX, WuX, LuH, ZhongY, LiW, HeJ, LiuS, FanQ, LiS, XiaoW, YuanH. Anal. Chim. Acta, 2022, 1221: 340115
[8]
TangY, WangP, WangR, YuanH, XinY, RenX, ChenQ, YinH. J. Mat. Chem. C, 2022, 10: 616
[9]
QiuS, XueM, ZhuG. Chem. Soc. Rev., 2014, 43: 6116
[10]
HeJ, XuJ, YinJ, LiN, BuX. Sci. China Mater., 2019, 62: 1655
[11]
ChenB, WangL, XiaoY, FronczekF R, XueM, CuiY, QianG. Angew. Chem. Int. Ed., 2008, 48: 500
[12]
YangX, LinX, ZhaoY, ZhaoY, YanD. Angew. Chem. Int. Ed., 2017, 56: 7853
[13]
WangM F, DengY H, HongY X, GuJ H, CaoY Y, LiuQ, BraunsteinP, LangJ P. Nat. Commun., 2023, 14: 7766
[14]
EskandariH, AmirzehniM, AsadollahzadehH, HassanzadehJ, EslamiP. Sensor. Actuat. B: Chem., 2018, 275: 145
[15]
ZhangQ Q, WangY, BraunsteinP, LangJ P. Chem. Soc. Rev., 2024, 53: 5227
[16]
DangS, MaE, SunZ, ZhangH. J. Mat. Chem., 2012, 22: 16920
[17]
HaoJ N, YanB. Chem. Comm., 2015, 51: 7737
[18]
ZhaoJ, WangY, DongW, WuY, LiD, ZhangQ. Inorg. Chem., 2016, 55: 3265
[19]
ChenS, ShiZ, QinL, JiaH, ZhengH. Cryst. Growth Des., 2017, 17: 67
[20]
ChenB, YangY, ZapataF, LinG, QianG, LobkovskyE. Adv. Mater., 2007, 19: 1693
[21]
HaoZ, SongX, ZhuM, MengX, ZhaoS N, SuS, YangW, SongS, ZhangH. J. Mat. Chem. A, 2013, 1: 11043
[22]
GuoZ, XuH, SuS, CaiJ, DangS, XiangS, QianG, ZhangH, O’KeeffeM, ChenB L. Chem. Comm., 2011, 47: 5551
[23]
LiuC Y, ChenX R, ChenH X, NiuZ, HiraoH, BraunsteinP, LangJ P. J. Am. Chem. Soc., 2022, 142: 6690
[24]
FengX, ShangY, ZhangK, HongM, LiJ, XuH, WangL, LiZ. Cryst. Eng. Comm., 2022, 24: 4187
[25]
YuM, XieY, WangX, LiY, LiG. ACS Appl. Mater. Interfaces, 2019, 11: 21201
[26]
YangD, ShiY, XiaoT, FangY, ZhengX. Inorg. Chem., 2023, 62: 6084
[27]
WangC, LiuX, DemirN, ChenJ, LiK. Chem. Soc. Rev., 2016, 45: 5107
[28]
WuS, LinY, LiuJ, ShiW, YangG, ChengP. Adv. Funct. Mater., 2018, 28: 1707169
[29]
LeiM, GeF, GaoX, ShiZ, ZhengH. Inorg. Chem., 2021, 60: 10513
[30]
LiuW, DaiX, WangY, SongL P, ZhangL, ZhangD, XieJ, ChenL, JuanD, WangJ, ChaiZ, WangS. Environ. Sci. Technol., 2019, 53: 332
[31]
LimG J, WuY, ShahB, KohJ, LiuC, ZhaoD, CheethamA, WangK J, DingJ. ACS Mater. Lett., 2019, 1: 147
[32]
ArslanH, ShekhahO, WohlgemuthJ, FranzrebM, FischerR, WöllC. Adv. Funct. Mater., 2011, 21: 4228
[33]
YangC, ZhuY, WangJ, SunW, YangL, LinH, LvS. Chem. Eng. J., 2021, 426: 131724
[34]
ChenB, WangL, ZapataF, QianG, LobkovskyE. J. Am. Chem. Soc., 2008, 130: 6718
[35]
XuH, LiuF, CuiY, ChenB, QianG. Chem. Comm., 2011, 47: 3153
[36]
BhatnagarA, HoglandW, MarquesM, SillanpääM. Chem. Eng. J., 2013, 219: 499
[37]
BaccarR, SarràM, BouzidJ, FekiM, BlánquezP. Chem. Eng. J., 2012, 310: 211
[38]
CriniG, LichtfouseE, WilsonL, Morin-CriniN. Environ. Chem. Lett., 2019, 17: 195
[39]
NdagjimanaP, LiuX, YuG, WangY. J. Hazard. Mater., 2019, 368: 602
[40]
IndherjithS, KarthikeyanS, MonicaJ H R, Krishna KumarK. Sep. Sci. Technol., 2018, 54: 667
[41]
MawloodI, SaodW, Al-RawiA, AljumialyA, HilalN. Environ. Monit. Assess., 2024, 196: 364
[42]
KuangY, ZhangX, ZhouS. Water, 2020, 12: 587
[43]
RosiN, KimJ, EddaoudiM, ChenB, O’KeeffeM, YaghiO. J. Am. Chem. Soc., 2005, 127: 1504
[44]
LiuS, LiX, ZhangH. New J. Chem., 2020, 44: 6269
[45]
GargA, AlmásiM, SainiR, PaulD R, SharmaA, JainA, JainI. Environ. Sci. Pollut. R., 2023, 30: 98548
[46]
SravaniV, GuptaS, SreenivasuluB, GangopadhyayP, RaoC, SureshA, SivaramanN. Opt. Mater., 2022, 133: 112944
[47]
Yuan Z., Hou G., Han L., Z. Anorg. Allg. Chem., 2022, 648.
[48]
YuX, RyadunA, PotapovA, FedinV. J. Hazard. Mater., 2023, 452: 2311939
[49]
LeiM Y, GeF Y, GaoX J, ShiZ Q, ZhengH G. Inorg. Chem., 2021, 60: 10513
[50]
YangW T, BaiZ Q, ShiW Q, YuanL Y, TianT, ChaiZ F, WangH, SunZ M. Chem. Comm., 2013, 49: 10415
[51]
MaH Y, WuQ, MaK X, YangH, LiD C, DouJ M, LiY W, WangS N. J. Mol. Struct., 2023, 1291: 136009
[52]
YuH H, FanMY, LiuQ, SuZ M, LiX, PanQ Q, HuX L. Inorg. Chem., 2020, 59: 2005
[53]
LiJ X, YuB Q, FanL H, WangL, ZhaoY C, SunC Y, LiW J, ChangZ D. J. Solid State Chem., 2022, 306: 122782

21

Accesses

0

Citations

Detail

Sections
Recommended

/