Optimizing the π-Bridge of Non-fullerene Acceptors to Suppress Dark Current in NIR Organic Photodetectors

Lin Shao , Yijun Huang , Ling Hong , Zishuo Xu , Xiye Yang , Chunchen Liu , Fei Huang , Yong Cao

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 712 -721.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 712 -721. DOI: 10.1007/s40242-024-4103-8
Article

Optimizing the π-Bridge of Non-fullerene Acceptors to Suppress Dark Current in NIR Organic Photodetectors

Author information +
History +
PDF

Abstract

Recently, the rapid development of non-fullerene acceptors (NFAs) has laid the foundation for performance improvements in near-infrared (NIR) organic photodetectors (OPDs). However, reducing the bandgap of NFAs to achieve strong absorption in the shorter-wave region usually leads to increased dark current density (J d) and decreased responsivity (R), severely limiting the detectivity (D*) of NIR-OPDs. To date, it remains challenging to manipulate the J d of NIR-OPDs through rational structure engineering of NFAs. Herein, three NIR-NFAs, namely bis(2-decyltetradecyl)4,4′-(2′,7′-di-tert-butylspiro[cyclopenta[2,1-b:3,4-b′]dithiophene-4,9′-fluorene]-2,6-diyl)bis(6-(((Z)-1-(dicyanomethylene)-5,6-difluoro-3-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl)thieno[3,4-b]thiophene-2-carboxylate) (TSIC-4F), bis(2-decyltetradecyl)6,6′-(2′,7′-di-tert-butylspiro[cyclopenta[2,1-b:3,4-b′]dithiophene-4,9′-fluorene]-2,6-diyl)bis(4-(((Z)-1-(dicyanomethylene)-5,6-difluoro-3-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl)thieno[3,4-b]thiophene-2-carboxylate) (STIC-4F), and 2,2′-((2Z,2′Z)-(((2′,7′-di-tert-butylspiro[cyclopenta [2,1-b:3,4-b′]dithiophene-4,9′-fluorene]-2,6-diyl)bis(2,3-bis(5-(2-butyloctyl)thiophen-2-yl)thieno[3,4-b]pyrazine-7,5-diyl))bis(metha-neylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (TPIC-4F), were designed using the thieno[3,4-b]thiophene (TT) and thieno[3,4-b]pyrazine (TPy) derivatives as the π-bridge. Owing to the intramolecular S-S and S-N interactions, STIC-4F and TPIC-4F exhibited smaller backbone distortions than TSIC-4F. A significantly red-shifted absorption with a peak at 1015 nm was observed in TPIC-4F film, larger than that (ca. 960 nm) for TSIC-4F and STIC-4F films. Moreover, OPDs operating in a photovoltaic mode were successfully fabricated, and TPIC-4F-based OPDs achieved the lowest J d of 3.18×10−8 A/cm2 at −0.1 V. Impressively, although TPIC-4F-based OPDs exhibited the lowest R, higher shot-noise-limited specific detectivity (D sh*) in 1000–1200 nm could be achieved due to its lowest J d. This study underscored the effectiveness of optimizing the π-bridge structure of NFAs to suppress J d, ultimately attaining higher D sh* in the NIR region.

Keywords

π-Bridge / Near-infrared / Non-fullerene acceptor / Dark current / Organic photodetector

Cite this article

Download citation ▾
Lin Shao, Yijun Huang, Ling Hong, Zishuo Xu, Xiye Yang, Chunchen Liu, Fei Huang, Yong Cao. Optimizing the π-Bridge of Non-fullerene Acceptors to Suppress Dark Current in NIR Organic Photodetectors. Chemical Research in Chinese Universities, 2024, 40(4): 712-721 DOI:10.1007/s40242-024-4103-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xie B, Chen Z, Ying L, Huang F, Cao Y. InfoMat, 2019, 2: 57.

[2]

Song Y, Yu G, Xie B, Zhang K, Huang F. Appl. Phys. Lett., 2020, 117: 9.

[3]

Wang C, Zhang X, Hu W. Chem. Soc. Rev., 2020, 49: 653.

[4]

Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y. Adv. Mater., 2013, 25: 4267.

[5]

Li Q, Guo Y, Liu Y. Chem. Mater., 2019, 31: 6359.

[6]

Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L, Yang Y. Adv. Mater., 2007, 19: 3979.

[7]

Perzon E, Zhang F, Andersson M, Mammo W, Inganäs O, Andersson M R. Adv. Mater., 2007, 19: 3308.

[8]

Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C-L, Nilsson B, Hegger A J. Science, 2009, 325: 1665.

[9]

Zhang C, Song A, Huang Q, Cao Y, Zhong Z, Liang Y, Zhang K, Liu C, Huang F, Cao Y. Nano-Micro Lett., 2023, 15: 140.

[10]

Liu C, Shao L, Chen S, Hu Z, Cai H, Huang F. Prog. Polym. Sci., 2023, 143: 101711.

[11]

Song A, Huang Q, Zhang C, Tang H, Zhang K, Liu C, Huang F, Cao Y. J. Semicond., 2023, 44: 082202.

[12]

Liu C, Xu W, Guan X, Yip H-L, Gong X, Huang F, Cao Y. Macromolecules, 2014, 47: 8585.

[13]

Zhong Z, Peng F, Ying L, Huang Z, Zhong W, Yu G, Cao Y, Huang F. Chinese J. Polym. Sci., 2023, 41: 1629.

[14]

Lin Y, Wang J, Zhang Z G, Bai H, L Y, Zhu D, Zhan X. Adv. Mater., 2015, 27: 1170.

[15]

Yuan J, Zhang Y, Zhou L, Zhang G, Yip H-L, Lau T-K, Lu X, Zhu C, Peng H, Johnson P A. Joule, 2019, 3: 1140.

[16]

Liu Y, Liu B, Ma C-Q, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q. Sci. China Chem., 2021, 65: 224.

[17]

Lee J, Ko S-J, Lee H, Huang J, Zhu Z, Seifrid M, Vollbrecht J, Brus V V, Karki A, Wang H. ACS Energy Lett., 2019, 4: 1401.

[18]

Chen Y, Zheng Y, Jiang Y, Fan H, Zhu X. J. Am. Chem. Soc., 2021, 143: 4281.

[19]

Zhang Y, Yu Y, Liu X, Miao J, Han Y, Liu J, Wang L. Adv. Mater., 2023, 35: 20.

[20]

Zhong Z, Peng F, Ying L, Yu G, Huang F, Cao Y. Sci. China Mater., 2021, 64: 2430.

[21]

Meng D, Zheng R, Zhao Y, Zhang E, Dou L, Yang Y. Adv. Mater., 2022, 34: 10.

[22]

Shao L, Hong L, Cao Y, Tang H, Huang Y, Xia X, Bai Y, Dong M, Zhang X, Lu X, Yang X, Liu C, Huang F, Cao Y. Adv. Opt. Mater., 2023, 11: 13.

[23]

Wang W, Shen P, Dong X, Weng C, Wang G, Bin H, Zhang J, Zhang Z-G, Li Y. ACS Appl. Mater. Interfaces, 2017, 9: 4614.

[24]

Simone G, Dyson M J, Meskers S C J, Janssen R A J, Gelinck G H. Adv. Funct. Mater., 2019, 30: 20.

[25]

Simone G, Dyson M J, Weijtens C H L, Meskers S C J, Coehoorn R, Janssen R A J, Gelinck G H. Adv. Opt. Mater., 2019, 8: 1901568.

[26]

Yin B, Zhou X, Li Y, Hu G, Wei W, Yang M, Jeong S, Deng W, Wu B, Cao Y, Huang B, Pan L, Yang X, Fu Z, Fang Y, Shen L, Yang C, Wu H, Lan L, Huang F, Cao Y, Duan C. Adv. Mater., 2024, 36: 2310811.

[27]

Zhang B, Trinh M T, Fowler B, Ball M, Xu Q, Ng F. J. Am. Chem. Soc., 201, 138: 16426.

[28]

Zheng Y, Chen Y, Cao Y, Huang F, Guo Y, Zhu X. ACS Mater. Lett., 2022, 4: 882.

[29]

Caspar V J, Meyer T J. J. Phys. Chem., 1983, 87: 952.

[30]

Blakesley J C, Neher D. Phys. Rev. B, 2011, 84: 7.

[31]

Collado-Fregoso E, Pugliese S N, Wojcik M, Benduhn J, Bar-Or E, Perdigón Toro L, Hörmann U, Spoltore D, Vandewal K, Hodgkiss J M. J. Am. Chem. Soc., 2019, 141: 2329.

[32]

Kublitski J, Hofacker A, Boroujeni B K, Benduhn J, Nikolis V C, Kaiser C, Spoltore D, Kleemann H, Fischer A, Ellinger F. Nat. Commun., 2021, 12: 551.

[33]

Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y. Nat. Photon., 2020, 14: 300.

[34]

Zarrabi N, Sandberg O J, Zeiske S, Li W, Riley D B. Nat. Commun., 2020, 11: 207.

[35]

Wu J, Lee J, Chin Y-C, Yao H, Cha H, Luke J, Hou J, Kim J-S, Durrant J R. Energy Environ. Sci., 2020, 13: 2422.

[36]

Xie Y, Liu W, Deng W, Wu H, Wang W, Si Y, Zhan X, Gao C, Chen X-K, Wu H. Nat. Photo., 2022, 16: 752.

[37]

Zhang Y, Cai G, Li Y, Zhang Z, Li T, Zuo X, Lu X, Lin Y. Adv. Mater., 2021, 33: 14.

[38]

Deng S, Zhang L, Zheng J, Li J, Lei S, Wu Z, Yang D, Ma D, Chen J. Adv. Opt. Mater., 2022, 10: 2200371.

[39]

Quan H, Wu X, Fink Z, Zhong W, Luo X, Li M, Su H, Lan L, Huang F, Ying L. Adv. Opt. Mater., 2023, 12: 2302512.

AI Summary AI Mindmap
PDF

275

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/