Well-controlled Organocatalytic Ring-opening Polymerization of Seven-membered Cyclic Carbonates with Cyclohexyl Fusion

Wei Zhang, Si-Yi Shan, Jiang Dai, Zhongzheng Cai, Jian-Bo Zhu

Chemical Research in Chinese Universities ›› , Vol. 40 ›› Issue (5) : 856-862. DOI: 10.1007/s40242-024-4094-5
Article

Well-controlled Organocatalytic Ring-opening Polymerization of Seven-membered Cyclic Carbonates with Cyclohexyl Fusion

Author information +
History +

Abstract

Developing green and well-controlled polymerization methods is of great significance for the preparation of biomedical polymer materials. In this contribution, an efficient organocatalytic ring-opening polymerization (ROP) of a class of seven-membered cyclic carbonates (T6DO, T6HDO, C6DO, C6HDO) containing cis- or trans-cyclohexane structure was established. Organic catalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) promoted living polymerization of these cyclic carbonates to deliver polycarbonate and block copolymer products with predictable molecular weights and narrow dispersity. The robust TBD-mediated ROP at 90 °C showcased turnover frequency (TOF) up to 103 h−1. The resulting amorphous polycarbonates displayed good thermal stability.

Cite this article

Download citation ▾
Wei Zhang, Si-Yi Shan, Jiang Dai, Zhongzheng Cai, Jian-Bo Zhu. Well-controlled Organocatalytic Ring-opening Polymerization of Seven-membered Cyclic Carbonates with Cyclohexyl Fusion. Chemical Research in Chinese Universities, , 40(5): 856‒862 https://doi.org/10.1007/s40242-024-4094-5

References

[[1]]
Zhang X, Zhao B W, Fu S W, Seruya R S, Madey J F III, Bukhryakova E, Zhang F W Macromolecules, 2024, 57: 2858.
CrossRef Google scholar
[[2]]
Wu R, Gilavan M T, Akbar M A, Fan L, Selvaganapathy P R Carbon, 2024, 216: 118597.
CrossRef Google scholar
[[3]]
Wei P R, Bhat G A, Darensbourg D J Angew. Chem. Int. Ed., 2023, 135: e202307507.
CrossRef Google scholar
[[4]]
Chen C X, Hou Z P, Chen S W, Guo J, Chen Z P, Hu J S, Yang L Q Compos Part B: Eng., 2022, 240: 109985.
CrossRef Google scholar
[[5]]
Shen Y D, Leng M W, Yang Y C, Boopathi S K, Sun G R, Wooley K L J. Am. Chem. Soc., 2023, 145: 15405.
CrossRef Google scholar
[[6]]
Sundermann D A, Park B, Hirschberg V, Schaefer J L, Théato P ACS Omega, 2023, 8: 23510.
CrossRef Google scholar
[[7]]
Sun W, Lu K Y, Wang L, Hao Q, Liu J R, Wang Y, Wu Z Q, Chen H J. Mater. Chem. B, 2022, 10: 5203.
CrossRef Google scholar
[[8]]
Watanabe Y, Takaoka S, Haga Y, Kishi K, Hakozaki S, Narumi A, Kato T, Tanaka M, Fukushima K Polym. Chem., 2022, 13: 5193.
CrossRef Google scholar
[[9]]
Yu W, Maynard E, Chiaradia V, Arno M C, Dove A P Chem. Rev., 2021, 121: 10865.
CrossRef Google scholar
[[10]]
Chanthaset N, Beckerle K, Okuda J, Ajiro H J. Appl. Polym. Sci., 2020, 137: 49073.
CrossRef Google scholar
[[11]]
Li M, Behzadi S, Chen M, Pang W M, Wang F Z, Tan C Organometallics, 2019, 38: 461.
CrossRef Google scholar
[[12]]
Okamoto H, Sogabe A, Honda S Commun. Chem., 2024, 7: 61.
CrossRef Google scholar
[[13]]
Li Z D, Duan S W, Zhao N, Li Z B J. Polym. Sci., 2023, 61: 1688.
CrossRef Google scholar
[[14]]
Zaky M S, Wirotius A-L, Coulembier O, Guichard G, Taton D ACS Macro Lett., 2022, 11: 1148.
CrossRef Google scholar
[[15]]
Ungpittagul T, Virachotikul A, Monot J, Martín-Vaca B, Bourissou D Adv. Synth. Catal., 2024, 366: 733.
CrossRef Google scholar
[[16]]
McMichael P, Schultze X, Cramail H, Peruch F Eur. Polym. J., 2024, 208: 112859.
CrossRef Google scholar
[[17]]
Sardon H Macromolecules, 2022, 55: 3769.
CrossRef Google scholar
[[18]]
Dove A P ACS Macro Lett., 2012, 1: 1409.
CrossRef Google scholar
[[19]]
Dai J, Xiong W, Li D-Y, Cai Z, Zhu J-B Chem. Commun., 2023, 59: 12731.
CrossRef Google scholar
[[20]]
Liu Y X, Zhang J B, Kou X H, Liu S F, Li Z B ACS Macro Lett., 2022, 11: 1183.
CrossRef Google scholar
[[21]]
Jiang X, Zhao N, Li Z B Chin. J. Chem., 2021, 39: 2403.
CrossRef Google scholar
[[22]]
Zhu J-B, Chen E Y X J. Am. Chem. Soc., 2015, 137: 12506.
CrossRef Google scholar
[[23]]
Orhan B, Tschan M J L, Wirotius A-L, Dove A P, Coulembier O, Taton D ACS Macro Lett., 2018, 7: 1413.
CrossRef Google scholar
[[24]]
Lv C D, Zhou L, Yuan R T, Mahmood Q, Xu G Q, Wang Q G New J. Chem., 2020, 44: 1648.
CrossRef Google scholar
[[25]]
Li Z Y, Qian Y L, Lai Y H, Du F-S, Li Z-C Biomacromolecules, 2022, 23: 5213.
CrossRef Google scholar
[[26]]
Lin B H, Waymouth R M Macromolecules, 2018, 51: 2932.
CrossRef Google scholar
[[27]]
Lv C D, Yang R L, Xu G Q, Zhou L, Wang Q G Eur. Polym. J., 2020, 133: 109792.
CrossRef Google scholar
[[28]]
Wang X-M, Huang H-Y, Tu Y-M, Cai Z, Zhu J-B Polym. Chem., 2023, 14: 2027.
CrossRef Google scholar
[[29]]
Wang M Q, Ding Z Q, Shi X C, Ma Z, Wang B, Li Y S Macromolecules, 2024, 57: 869.
CrossRef Google scholar
[[30]]
Dai J, Xiong W, Du M-R, Wu G, Cai Z, Zhu J-B Sci. China Chem., 2022, 66: 251.
CrossRef Google scholar
[[31]]
Stellmach K A, Paul M K, Xu M Z, Su Y L, Fu L B, Toland A R, Tran H, Chen L H, Ramprasad R, Gutekunst W R ACS Macro Lett., 2022, 11: 895.
CrossRef Google scholar
[[32]]
Xia Y L, Yuan P J, Zhang Y P, Sun Y Y, Hong M Angew. Chem. Int. Ed., 2023, 62: e202217812.
CrossRef Google scholar
[[33]]
Wang Y C, Zhu Y N, Lv W X, Wang X H, Tao Y H J. Am. Chem. Soc., 2023, 145: 1877.
CrossRef Google scholar
[[34]]
Yuan J S, Xiong W, Zhou X H, Zhang Y, Shi D, Li Z C, Lu H J. Am. Chem. Soc., 2019, 141: 4928.
CrossRef Google scholar
[[35]]
Xiong W, Chang W Y, Shi D, Yang L J, Tian Z Y, Wang H, Zhang Z C, Zhou X H, Chen E-Q, Lu H Chem, 2020, 6: 1831.
CrossRef Google scholar
[[36]]
Shen Y D, Yang X, Song Y, Tran D K, Wang H, Wilson J, Dong M, Vazquez M, Sun G R, Wooley K L JACS Au, 2022, 2: 515.
CrossRef Google scholar
[[37]]
Lamparelli D H, Villar-Yanez A, Dittrich L, Rintjema J, Bravo F, Bo C, Kleij A W Angew. Chem., 2023, 135: e202314659.
CrossRef Google scholar
[[38]]
Makiguchi K, Ogasawara Y, Kikuchi S, Satoh T, Kakuchi T Macromolecules, 2013, 46: 1772.
CrossRef Google scholar
[[39]]
Fukushima K, Honda K, Inoue Y, Tanaka M Eur. Polym. J., 2017, 95: 728.
CrossRef Google scholar
[[40]]
Fukushima K, Nozaki K Macromolecules, 2020, 53: 5018.
CrossRef Google scholar
[[41]]
Venkataraman S, Ng V W L, Coady D J, Horn H W, Jones G O, Fung T S, Sardon H, Waymouth R M, Hedrick J L, Yang Y Y J. Am. Chem. Soc., 2015, 137: 13851.
CrossRef Google scholar
[[42]]
Helou M, Miserque O, Brusson J M, Carpentier J F, Guillaume S M Chem.-Eur. J., 2010, 16: 13805.
CrossRef Google scholar
[[43]]
Siragusa F, Van Den Broeck E, Ocando C, Müller A J, De Smet G, Maes B U W, De Winter J, Van Speybroeck V, Grignard B, Detrembleur C ACS Sustain. Chem. Eng., 2021, 9: 1714.
CrossRef Google scholar
[[44]]
Shan S-Y, Zhang W, Cao Q, Ye Y-C, Cai Z, Zhu J-B Polym. Chem., 2024, 15: 1070.
CrossRef Google scholar
[[45]]
Zhang W, Dai J, Wu Y-C, Chen J-X, Shan S-Y, Cai Z, Zhu J-B ACS Macro Lett., 2022, 11: 173.
CrossRef Google scholar
[[46]]
Wu Y-C, Fan H-Z, Zhang W, Wang M-Y, Cai Z, Zhu J-B Macromolecules, 2022, 55: 9232.
CrossRef Google scholar
[[47]]
Wu Y-C, Fan H-Z, Shan S-Y, Wang S-Q, Cai Z, Zhu J-B Chem. Res. Chinese Universities, 2023, 39: 809.
CrossRef Google scholar
[[48]]
Yang X, Zhang W, Huang H-Y, Dai J, Wang M-Y, Fan H-Z, Cai Z, Zhang Q, Zhu J-B Macromolecules, 2022, 55: 2777.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/